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Abstract: By exploiting the analyticity and boundary value properties of the thermal Green
functions that result from the KMS condition in both time and energy complex variables, we treat
the general (non–perturbative) problem of recovering the thermal functions at real times from
the corresponding functions at imaginary times, introduced as primary objects in the Matsubara
formalism. The key property on which we rely is the fact that the Fourier transforms of the
retarded and advanced functions in the energy variable have to be the “unique Carlsonian analytic
interpolations” of the Fourier coefficients of the imaginary–time correlator, the latter being taken
at the discrete Matsubara imaginary energies, respectively in the upper and lower half–planes.
Starting from the Fourier coefficients regarded as “data set”, we then develop a method based on
the Pollaczek polynomials for constructing explicitly their analytic interpolations.

1. Introduction

In the standard imaginary–time formalism of quantum statistical mechanics (tracing back to Mat-
subara [15]) and, later on, of quantum field theory at finite temperature (see e.g. [14] and references
therein), there arises the a–priori non–trivial problem of recovering the “physical” correlations at
real times starting from data at imaginary times. More specifically, the correlations at imaginary–
time of observables (or, more generally, of boson or fermion fields) in a thermal equilibrium state at
temperature T = β−1 are defined as periodic (or antiperiodic) functions of period β, and therefore
they are equivalently characterized by their discrete mode expansion 1

β

∑
n Gn exp(−iζnτ) in terms

of the so–called “Matsubara energies” iζn, where ζn = 2nπ/β (or (2n+ 1)π/β).
The problem of recovering the correlations at real time, or equivalently the retarded and ad-

vanced Green’s functions at real energies, from the previous sequence of Fourier coefficients {Gn}
admits a unique and well–defined theoretical solution in terms of the notion of “Carlsonian analytic
interpolation of this sequence”. This can be achieved [5], and will be recalled below in Sect. 2, if the
imaginary–time formalism is embedded in the (conceptually more satisfactory) general description
of quantum thermal states as KMS states [11]. However, as suggested by the lattice approach of
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the imaginary–time formalism, it may be interesting to have a concrete procedure for constructing
satisfactory approximate solutions of this problem when one starts from incomplete data sets.

In this paper we give a precise algorithm for the previous reconstruction problem; this mathe-
matical method is presented in Sect. 3. Moreover, in the subsequent Sect. 4, the method is applied
to the case when the data are finite in number and affected by noise.

Let us consider the algebra A generated by the observables of a quantum system. Denoting
by A,B, . . . arbitrary elements of A and by A → A(t) (A = A(0)) the action of the (time–
evolution) group of automorphisms on this algebra, we now recall the KMS analytic structure of
two–point correlation functions 〈A(t1)B(t2)〉Ωβ

, in a thermal equilibrium state Ωβ of the system

at temperature T = β−1.
By time–translation invariance, these quantities only depend on t = t1 − t2, and we shall put

WAB(t) = 〈A(t)B〉Ωβ
, (1)

W ′
AB(t) = 〈BA(t)〉Ωβ

. (2)

In finite volume approximations, the time–evolution is represented by a unitary group eiH′t, so
that

A(t) = eiH′tAe−iH′t, (3)

where H ′ = H − µN , H being the Hamiltonian, µ the chemical potential, and N the particle
number; under general conditions, the operators e−βH′

have finite traces for all β > 0 (see e.g. [11]).
Then the correlation functions are given, correspondingly, by the formulae

WAB(t) =
1

Zβ
Tr
{
e−βH′

A(t)B
}
, (4)

W ′
AB(t) =

1

Zβ
Tr
{
e−βH′

BA(t)
}
, (5)

where Zβ = Tr e−βH′

.
One then introduces the following holomorphic functions of the complex time variable t+ iγ:

GAB(t+ iγ) =
1

Zβ
Tr
{
e−(β+γ)H′

A(t) eγH′

B
}
, (6)

analytic in the strip {t+ iγ; t ∈ R, −β < γ < 0}, and

G′
AB(t+ iγ) =

1

Zβ
Tr
{
e−(β−γ)H′

B e−γH′

A(t)
}
, (7)

analytic in the strip {t+ iγ; t ∈ R, 0 < γ < β}, which are such that:

lim
γ→0
γ<0

GAB(t+ iγ) = WAB(t), (8)

lim
γ→0
γ>0

G′
AB(t+ iγ) = W ′

AB(t). (9)

From (6), (7) and the cyclic property of Tr , we then obtain the KMS relation

WAB(t) = Tr e−βH′

A(t)B = TrB e−βH′

A(t) = G′
AB(t+ iβ), (10)
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which implies the identity of holomorphic functions (in the strip 0 < γ < β)

GAB(t+ i(γ − β)) = G′
AB(t+ iγ). (11)

According to the analysis of [11] in the Quantum Mechanical framework and of [8] in the Field–
theoretical framework, this KMS analytic structure is preserved by the thermodynamic limit under
rather general conditions.

In the case when the algebra A is generated by smeared–out bosonic or fermionic field operators
(field theory at finite temperature), the principle of relativistic causality of the theory implies
additional relations for the corresponding pairs of analytic functions (G,G′). In fact, this principle
of relativistic causality is expressed by the commutativity (resp. anticommutativity) relations for
the boson field Φ(x) (resp. fermion field Ψ(x)) at space–like separation:

[Φ(t,x), Φ(t′,x′)] = 0 (resp. {Ψ(t,x), Ψ(t′,x′)} = 0) for (t− t′)2 < (x − x
′)2. (12)

In this field–theoretical case, we can choose as suitable operators A the “smeared–out field op-
erators” of the form A =

∫
Φ(y0,y)f(y0,y)dy0 dy (resp.

∫
Ψ(y0,y)f(y0,y)dy0 dy), where f is

any smooth test–function with (arbitrary small) compact support around the origin in space–
time variables. For the observable B, we can then choose any operator Ax obtained from A by
the action of the space–translation group (which amounts to replace the test–function f(y0,y)
by f(y0,y) = f(y0,y − x)). It then follows from (12) that the corresponding analytic functions
GAAx

(t+ iγ) and G′
AAx

(t+ iγ) (satisfying (11)) have real boundary values WAAx
(t) and W ′

AAx

(t)
which satisfy, on some interval |t| < t(x, f), coincidence relations of the following form:

WAAx
(t) = W ′

AAx

(t) in the boson case, (13)

WAAx
(t) = −W ′

AAx

(t) in the fermion case. (14)

Then, in view of identity (11), the coincidence relations (13) and (14) imply the existence of a
single analytic function GAAx

(t+ iγ) which is such that:

a) in the boson case:

GAAx
= GAAx

for − β < γ < 0, (15)

GAAx
= G′

AAx

for 0 < γ < β; (16)

b) in the fermion case:

GAAx
= GAAx

for − β < γ < 0, (17)

GAAx
= −G′

AAx

for 0 < γ < β. (18)

Correspondingly, it follows that GAAx
is either periodic or antiperiodic with period iβ in the full

complex plane minus periodic cuts along the half–lines {t + iγ; t > t(x, f), γ = kβ, k ∈ Z} and
{t+ iγ; t < −t(x, f), γ = kβ, k ∈ Z}.

These analytic functions GAAx
(t + iγ) are smeared–out forms (corresponding to various test–

functions f) of the thermal two–point function of the fields Φ (or Ψ) in the complex time variable.
In other words, this thermal two–point function can be fully characterized in terms of an ana-
lytic function G(t + iγ,x) (with regular dependence in the space variables) enjoying the following
properties:

a) G(t+ iγ,x) = ǫG(t+ i(γ − β),x), where ǫ = + for a boson field, and ǫ = − for a fermion field;
b) for each x, the domain of G in the complex variable t is C \ {t+ iγ; |t| > |x|; γ = kβ, k ∈ Z};
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c) the boundary values of G at real times are the thermal correlations of the field, namely:

lim
γ→0
γ<0

G(t+ iγ,x) = W(t,x), (19)

lim
γ→0
γ>0

G(t+ iγ,x) = W ′(t,x), (20)

where in finite volume regions, W and W ′ can be formally expressed as follows (a rigorous
justification of the trace–operator formalism in the appropriate Hilbert space being given in [8]):

W(t,x) =
1

Zβ
Tr e−βH Φ(t,x)Φ(0,0), (21)

W ′(t,x) =
1

Zβ
Tr e−βH Φ(0,0)Φ(t,x), (22)

for the boson case, and similarly in terms of Ψ(t,x) for the fermion case.

In this analytic structure, we shall distinguish two quantities that play an important role:

i) the restriction G(iγ,x) of the function G to the imaginary axis is a β–periodic (or antiperiodic)
function of γ which must be identified with the “time–ordered product at imaginary times”,
considered in the Matsubara approach of imaginary–time formalism. In the latter, this quantity
or its set of Fourier coefficients plays the role of initial data.

ii) The “retarded” and “advanced” two–point functions

R(t,x) = i θ(t)[W(t,x) − ǫW ′(t,x)], (23)

A(t,x) = −i θ(−t)[W(t,x) − ǫW ′(t,x)], (24)

which are respectively the “jumps” of the function G across the real cuts {t; t ≥ |x|} and
{t; t < −|x|}. These kernels have an important causal interpretation; in particular, R describes
the “response of the system” to small perturbations of the equilibrium state. The knowledge of
R and A and, consequently, of W−W ′ = −i (R−A) allows one to reconstruct W and W ′ by the

application of the Bose–Einstein factor 1/(1 − e∓βω) to their Fourier transforms W̃(ω), W̃ ′(ω)
(this procedure being an implementation of the KMS property in the energy variable ω).

The rest of the paper is devoted to the problem of recovering the “real–time quantities” R and A,
starting from the “time–ordered product at imaginary times” as initial data. This will require the
conjoint use of the analytic structure of G in complex time and of its Fourier–Laplace transform
in the complex energy variable. In fact, the key property on which our reconstruction of real–time

quantities relies is the following one: the Fourier–Laplace transforms R̃ and Ã of the functions
R and A, which are defined and analytic respectively in the upper and lower half–planes of the
energy variable ω, are analytic interpolations of the set of Fourier coefficients {Gn} of the function
G at imaginary times, the latter being taken at the Matsubara energies ω = i ζn. Moreover, the

uniqueness of this interpolation is ensured by global bounds on R̃ and Ã, according to a standard

theorem by Carlson [3]. The basic equalities that relate R̃(i ζn) and Ã(i ζn) to the corresponding
coefficients Gn will be called “Froissart–Gribov–type equalities” for the following historical reason.
A general n–dimensional mathematical study of the type of double–analytic structure encountered
here has been performed in [6] in connection with the theory of complex angular momentum,
where the original Froissart–Gribov equalities had been first discovered (in the old framework of
S-matrix theory). The fact that this structure is relevant (in its simplest one–dimensional form)
in the analysis of thermal quantum states has been already presented in [5] in the framework of
Quantum Field Theory at finite temperature.
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2. Double Analytic Structure of the Thermal Green Function and

Froissart–Gribov–type Equalities

In the following mathematical study we replace the complex time variable t+iγ of the introduction
by τ = i(t+ iγ) in such a way that, in our “reconstruction problem” treated in Sects. 3 and 4, the
initial data of the function G(τ, ·) considered below correspond to real values of τ . Up to this change
of notation, this general analytic function G(τ, ·) can play the role of the previously described two–
point function of a boson or fermion field at fixed x. However, since the only variables involved in
the forthcoming study are τ and its Fourier–conjugate variable ζ, the extra “spectator variables”,
denoted by the point (·), may as well represent a fixed momentum (after Fourier transformation
with respect to the space variables) or the action on a test–function f (as for the correlations of
field observables A = A(f) described in the introduction).

Let us summarize the analytic structure that we want to study.

Hypotheses. The function G(τ, ·), (τ = u+ iv, u, v ∈ R), satisfies the following properties:

a) it is analytic in the open strips kβ < u < (k + 1)β (v ∈ R, k ∈ Z, β = 1/T ) and continuous
at the boundaries;

b) it is periodic (antiperiodic) for bosons (fermions) with period β, i.e.

G(τ + β, ·) =

{
G(τ, ·) for bosons, (τ ∈ C ),
−G(τ, ·) for fermions, (τ ∈ C );

c) sup
−kβ<u<(k+1)β

|G(u + iv, ·)| ≤ C|v|α, (v ∈ R; C,α constants). (25)

We shall treat both the boson and fermion field cases at the same time by exploiting the 2β–
periodicity of the function G(τ, ·). To this purpose, we take the Fourier series (in the sense of
L2[−β, β]) of G(τ, ·), which we write

G(τ, ·) =
1

2β

+∞∑

n=−∞

Gn(·)e−iζnτ , ζn =
π

β
n , (26)

and whose Fourier coefficients are given by

Gn(·) =

∫ β

−β

G(τ, ·) eiζnτ dτ. (27)

It is convenient to split expansion (26) into two terms as follows:

G(+)(τ, ·) =
1

2β

+∞∑

n=0

G(+)
n (·) e−iζnτ , G(+)

n (·) ≡ Gn(·), (n = 0, 1, 2, . . . ), (28)

G(−)(τ, ·) =
1

2β

−∞∑

n=−1

G(−)
n (·) e−iζnτ , G(−)

n (·) ≡ Gn(·), (n = −1,−2, . . . ), (29)

then,

G(+)
n (·) =

∫ β

−β

G(+)(τ, ·) eiζnτ dτ, (n = 0, 1, 2, . . . ), (30)

G(−)
n (·) =

∫ β

−β

G(−)(τ, ·) eiζnτ dτ, (n = −1,−2, . . . ). (31)
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We now introduce in the complex plane of the variable τ = u+ iv (u, v ∈ R) the following domains:
the half–planes I± = {τ ∈ C | Im τ ≷ 0}; the “cut–domain” I+ \ Ξ+, where the cuts Ξ+ are
given by Ξ+ = {τ ∈ C | τ = kβ + iv, v ≥ 0, k ∈ Z}, and I− \ Ξ−, where Ξ− = {τ ∈ C | τ =

kβ + iv, v ≤ 0, k ∈ Z}. Moreover, we denote by
◦

A any subset A of C which is invariant under the

translation by kβ, k ∈ Z (e.g.
◦

Ξ±, I±\
◦

Ξ±, etc.) (see Ref. [6]I). Accordingly, the periodic cut–

τ–plane C \ (
◦

Ξ+ ∪
◦

Ξ−) will be denoted by
◦

Πτ . We now introduce the jump functions J
(+)
(kβ)(v, ·)

and J
(−)
(kβ)(v, ·) that represent the discontinuities of G(+)(τ, ·) and G(−)(τ, ·) across the cuts located

respectively at Re τ ≡ u = kβ, v ≥ 0, and at Re τ ≡ u = kβ, v ≤ 0, (k ∈ Z):

J
(+)
(kβ)(v, ·) = +i lim

ǫ→0
ǫ>0

{
G(+)(kβ + ǫ+ iv, ·) − G(+)(kβ − ǫ+ iv, ·)

}
, (v ≥ 0, k ∈ Z), (32)

J
(−)
(kβ)(v, ·) = −i lim

ǫ→0
ǫ>0

{
G(−)(kβ + ǫ+ iv, ·) − G(−)(kβ − ǫ+ iv, ·)

}
, (v ≤ 0, k ∈ Z). (33)

Let us note that these definitions are well–posed and appropriate because, as we shall see in the

following theorem, G(+)(τ, ·) and G(−)(τ, ·) are holomorphic in the cut–domains I−∪ [I+\
◦

Ξ+] and

I+ ∪ [I−\
◦

Ξ−], respectively. Moreover, we suppose hereafter that the slow–growth condition (25)

extends to the discontinuities J
(±)
(kβ)(v, ·), that turn out to be “tempered functions” [4]. Finally, in

view of the periodicity properties of G(τ, ·), it is sufficient to consider only the strip, in the τ–plane,
defined by −a ≤ u ≤ 2β − a (0 < a < β), v ∈ R (see Fig. 1).

We then introduce the Laplace transforms of the jump functions across the cuts located at
Re τ = 0, and at Re τ = β; i.e.

J̃
(+)
(0) (ζ, ·) =

∫ +∞

0

J
(+)
(0) (v, ·) e−ζv dv, (ζ = ξ + iη, Re ζ > 0), (34)

J̃
(−)
(0) (ζ, ·) =

∫ 0

−∞

J
(−)
(0) (v, ·) e−ζv dv, (Re ζ < 0), (35)

J̃
(+)
(β) (ζ, ·) =

∫ +∞

0

J
(+)
(β) (v, ·) e−ζv dv, (Re ζ > 0), (36)

J̃
(−)
(β) (ζ, ·) =

∫ 0

−∞

J
(−)
(β) (v, ·) e−ζv dv, (Re ζ < 0). (37)

We can state the following theorem.

Theorem 1. If the functions G(τ, ·) and J
(±)
(kβ)(v, ·) satisfy the slow–growth condition (25) uniformly

in
◦

Πτ= C \ (
◦

Ξ+ ∪
◦

Ξ−) up to the closure, the following properties hold true:

i) The function G(+)(τ, ·) (respectively G(−)(τ, ·)) is holomorphic in the cut–domain I− ∪ [I+\
◦

Ξ+]

(respectively I+ ∪ [I−\
◦

Ξ−]).

ii-a) The Laplace transforms J̃
(+)
(0) (ζ, ·) and J̃

(+)
(β) (ζ, ·) are holomorphic in the half–plane Re ζ > 0.

The Laplace transforms J̃
(−)
(0) (ζ, ·) and J̃

(−)
(β) (ζ, ·) are holomorphic in the half–plane Re ζ < 0.

ii-b) J̃
(+)
(0) (ζ, ·) and J̃

(+)
(β) (ζ, ·) belong to the Hardy space H

2
(

C
(+)
(δ)

)
, where C

(+)
(δ) = {ζ ∈ C |Re ζ >

δ, δ ≥ ǫ > 0}. J̃ (−)
(0) (ζ, ·) and J̃

(−)
(β) (ζ, ·) belong to the Hardy space H

2
(
C

(−)
(δ)

)
, where C

(−)
(δ) = {ζ ∈

C |Re ζ < δ, δ ≥ ǫ > 0}.
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γ
0

γa ε

a2β− aγ

u

ε

γ
β

v

−β

-a

2β

β

0

Fig. 1. Integration paths used in the proof of Theorem 1

iii-a) In the case of the boson statistics the symmetric combinations G̃(+,b)(ζ, ·) :≡ J̃
(+)
(0) (ζ, ·) +

J̃
(+)
(β) (ζ, ·) and G̃(−,b)(ζ, ·) :≡ J̃

(−)
(0) (ζ, ·) + J̃

(−)
(β) (ζ, ·) interpolate uniquely the Fourier coefficients

G(+)
2m (·) and G(−)

2m (·) respectively (hereafter the superscript (b) stands for the boson statistics). Let
ζm = 2mπ/β, then the following Froissart–Gribov–type equalities hold:

G̃(+,b)(ζm, ·) = J̃
(+)
(0) (ζm, ·) + J̃

(+)
(β) (ζm, ·) = G(+)

2m (·), (m = 1, 2, 3, . . . ), (38)

G̃(−,b)(ζm, ·) = J̃
(−)
(0) (ζm, ·) + J̃

(−)
(β) (ζm, ·) = G(−)

2m (·), (m = −1,−2,−3, . . . ). (39)

iii-b) In the case of the fermion statistics the antisymmetric combinations G̃(+,f)(ζ, ·) :≡ J̃
(+)
(0) (ζ, ·)−

J̃
(+)
(β) (ζ, ·) and G̃(−,f)(ζ, ·) :≡ J̃

(−)
(0) (ζ, ·) − J̃

(−)
(β) (ζ, ·) interpolate uniquely the Fourier coefficients

G(+)
2m+1(·) and G(−)

2m+1(·) respectively (hereafter the superscript (f) stands for the fermion statistics).
Let ζm = (2m+ 1)π/β, then the following Froissart–Gribov–type equalities hold:

G̃(+,f)(ζm, ·) = J̃
(+)
(0) (ζm, ·) − J̃

(+)
(β) (ζm, ·) = G(+)

2m+1(·), (m = 0, 1, 2, 3, . . . ), (40)

G̃(−,f)(ζm, ·) = J̃
(−)
(0) (ζm, ·) − J̃

(−)
(β) (ζm, ·) = G(−)

2m+1(·), (m = −1,−2,−3, . . . ). (41)
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Proof. (i) In view of the Riemann–Lebesgue theorem, and since G(+)(τ, ·) ∈ L1[−β, β], the Fourier

coefficients G(+)
n (·) tend to zero as n → ∞. From expansion (28) we have for all τ = u + iv, with

v < 0:

|G(+)(τ, ·)| =

∣∣∣∣∣
1

2β

+∞∑

n=0

G(+)
n (·)e−iζnτ

∣∣∣∣∣ ≤ K
∑

n≥0

eζnv, (42)

where K =
∫ β

−β
|G(τ, ·)| dτ . The series

∑+∞

n≥0 e
ζnv converges uniformly in any domain compactly

contained in the half–plane Im τ < 0. In view of the Weierstrass theorem on the uniformly conver-
gent series of analytic functions, we can conclude that G(+)(τ, ·) is holomorphic in the half–plane
Im τ < 0. By using analogous arguments we can prove that G(−)(τ, ·) is holomorphic in the half–
plane Im τ > 0. Furthermore, we know from Hypothesis a) that G(τ, ·) = G(+)(τ, ·) + G(−)(τ, ·) is
holomorphic in the strips kβ < u < (k + 1)β (k ∈ Z, v ∈ R), and continuous at the boundaries of

the strips. We can conclude that G(+)(τ, ·) is holomorphic in the cut–domain I− ∪ [I+\
◦

Ξ+], and

G(−)(τ, ·) is holomorphic in the cut–domain I+ ∪ [I−\
◦

Ξ−].
(ii) Property (ii, a) follows easily from the assumption of “temperateness” of the jump functions [4].

For what concerns property (ii, b) we limit ourselves to prove that J̃
(+)
(0) (ζ, ·) belongs to the Hardy

space H
2
(

C
(+)
(δ)

)
, since the remaining part of the statement can be proved analogously. To this

purpose, we rewrite the Laplace transform (34) in the following form:

∫ +∞

0

(
J

(+)
(0) (v, ·)e−δv

)
e−ζ′v dv :≡ J̃

(+)
(0)(δ)(ζ

′, ·), (Re ζ′ > 0), (43)

where Re ζ′ = Re ζ − δ (δ ≥ ǫ > 0). In view of the slow–growth property of J
(+)
(0) (v, ·), we can then

say that the function J
(+)
(0) (v, ·) exp(−δv) belongs to the intersection L1[0,+∞)∩L2[0,+∞). Then,

thanks to the Paley–Wiener theorem, we can conclude (returning to the variable ζ) that J̃
(+)
(0) (ζ, ·)

belongs to the Hardy space H
2
(

C
(+)
(δ)

)
(see Ref. [12]). Accordingly, J̃

(+)
(0) (ζ, ·) tends uniformly to

zero as ζ tends to infinity inside any fixed half–plane Re ζ ≥ δ′ > δ. In particular, J̃
(+)
(0) (ζn, ·), with

ζn = nπ/β (n = 1, 2, . . . ), tends to zero as n→ ∞.

(iii) We introduce the integral I
(+)
γ defined as follows (this method has been introduced by Bros

and Buchholz [5], and will be developed in a more detailed form in [7] within the general framework
of QFT):

I(+)
γ (ζ, ·) =

∫

γ

G(+)(τ, ·) eiζτ dτ, (44)

where the path γ encloses both the cuts located at u = 0, v ≥ 0 and at u = β, v ≥ 0 (see Fig. 1).
In view of the slow–growth condition (25), this integral is well–defined. By choosing as integration
path a pair of contours (γ0, γβ) enclosing respectively the cuts at u = 0, v ≥ 0 and at u = β, v ≥ 0,
and then flattening them (in a folded way) onto the cuts (see Fig. 1), we obtain:

I
(+)
(γ0∪γβ)(ζ, ·) =

∫ +∞

0

J
(+)
(0) (v, ·) e−ζv dv + eiζβ

∫ +∞

0

J
(+)
(β) (v, ·) e−ζv dv = J̃

(+)
(0) (ζ, ·) + eiζβ J̃

(+)
(β) (ζ, ·).(45)
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Next, we choose the path γaǫ
, whose support is: ] − a + i∞,−a] ∪ [−a,−ǫ] ∪ [γ

(0)
ǫ ] ∪ [ǫ, β − ǫ] ∪

[γ
(β)
ǫ ] ∪ [β + ǫ, 2β − a] ∪ [2β − a, 2β − a+ i∞[, where γ

(0)
ǫ and γ

(β)
ǫ are half–circles turning around

the points τ = 0 and τ = β, respectively (see Fig. 1). By taking into account the 2β–periodicity of
G(+)(τ, ·), we get, for ζ = ζn = nπ/β, (n = 1, 2, . . . ):

lim
ǫ→0

I(+)
γaǫ

(ζn, ·) =

∫ 2β−a

−a

G(+)(τ, ·) eiζnτ dτ = G(+)
n (·). (46)

Then, from the Cauchy distortion argument, we have I
(+)
γ0∪γβ

(ζn, ·) = limǫ→0 I
(+)
γaǫ

(ζn, ·), that is

J̃
(+)
(0) (ζn, ·) + eiζnβ J̃

(+)
(β) (ζn, ·) = G(+)

n (·). (47)

We now distinguish two cases:

1) n even: n = 2m, ζm = 2mπ/β (m = 1, 2, . . . ); then from (47) we obtain equalities (38).
2) n odd: n = 2m+ 1, ζm = (2m+ 1)π/β (m = 0, 1, 2, . . . ); then from (47) we obtain equalities
(40).

We have thus obtained two combinations (symmetric and antisymmetric, respectively) that inter-

polate the Fourier coefficients G(+)
n (·). The uniqueness of the interpolation is guaranteed by the

Carlson theorem [3] that can be applied since J̃
(+)
(0) (ζ, ·) and J̃

(+)
(β) (ζ, ·) belong to the Hardy space

H
2
(

C
(+)
(δ)

)
. Proceeding with analogous arguments applied to G(−)(τ, ·) equalities (39) and (41)

are obtained. ⊓⊔
In conclusion, we can say that the thermal Green functions present a double analytic structure

involving the analyticity properties in the τ = u+iv and ζ = ξ+iη planes. The 2β–periodic function

G(+)(τ, ·) (resp. G(−)(τ, ·)) is analytic in the cut–domain I− ∪ [I+\
◦

Ξ+] (resp. I+ ∪ [I−\
◦

Ξ−]); its
Fourier coefficients can be uniquely interpolated (in the sense of the Carlson theorem), and are the

restriction to the appropriate Matsubara energies of a function G̃(+,b−f)(ζ, ·) (resp. G̃(−,b−f)(ζ, ·)),
analytic in the half–plane Re ζ > 0 (resp. Re ζ < 0). It is straightforward to verify that the

jump function J
(+)
(0) (v, ·) coincides with the retarded Green function, and J

(−)
(0) (v, ·) coincides with

the advanced one; analogously, putting i ζ = ω, we can identify G̃(+,b−f)(ζ, ·) and G̃(−,b−f)(ζ, ·)
respectively with the retarded and advanced Green functions in the energy variable ω conjugate
to the real time t.

3. Representation of the Jump Function in Terms of an Infinite Set of Fourier

Coefficients

First let us consider a system of bosons; since n is even, i.e. n = 2m, ζm = (2mπ)/β, (m =
0, 1, 2, . . . ), we have:

G̃(+,b)

(
2mπ

β
, ·
)

= 2

∫ β

0

G(+)(τ, ·) ei 2mπ
β

τ dτ . (48)

Next, recalling that G(+)(τ, ·) is β–periodic, we can write also the following Fourier expansion:

G(+)(τ, ·) =
1

β

∞∑

m=0

G̃(+,b)
(β)

(
2mπ

β
, ·
)
e−i 2mπ

β
τ , (49)

G̃(+,b)
(β)

(
2mπ

β
, ·
)

=

∫ β

0

G(+)(τ, ·) ei 2mπ
β

τ dτ =
1

2
G̃(+,b)

(
2mπ

β
, ·
)
. (50)
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Finally, putting β = 2π, formulae (49), (50) can be rewritten in the more convenient form:

G(+)(τ, ·) =
1

2π

∞∑

m=0

G̃(+,b)
(2π) (m, ·)e−imτ , (51)

G̃(+,b)
(2π) (m, ·) =

∫ 2π

0

G(+)(τ, ·) eimτ dτ =
1

2
G̃(+,b)(m, ·). (52)

Recalling once again the β–periodicity of the function G(+)(τ, ·), we write now the Froissart–Gribov
equalities (38) as

G̃(+,b)(m, ·) = J̃
(+,b)
(0) (m, ·) + J̃

(+,b)
(2π) (m, ·) = 2J̃

(+,b)
(0) (m, ·) = 2G̃(+,b)

(2π) (m, ·), (m = 1, 2, 3, . . . ).(53)

It is now convenient to introduce an auxiliary function J
(b)
∗ (v, ·), defined as follows:

J
(b)
∗ (v, ·) = e−v J

(+,b)
(0) (v, ·), (v ∈ R

+), (54)

and the corresponding Laplace transform:

J̃
(b)
∗ (ζ, ·) =

∫ +∞

0

J
(b)
∗ (v, ·) e−ζv dv, (ζ = ξ + iη,Re ζ > −1 + δ, δ ≥ ǫ > 0). (55)

It is straightforward to prove, via the Paley–Wiener theorem, that J̃
(b)
∗ (ζ, ·) belongs to the Hardy

space H
2
(

C
(+)
(−1+δ)

)
, where C

(+)
(−1+δ) = {ζ ∈ C |Re ζ > −1 + δ, δ ≥ ǫ > 0}. Next, the Froissart–

Gribov equalities (53) can be rewritten as

J̃
(b)
∗ (m, ·) = G̃(+,b)

(2π) (m+ 1, ·) , (m = 0, 1, 2, . . . ). (56)

Then we can prove the following lemma.

Lemma 1. The function J̃
(b)
∗ (−1/2+ iη, ·), (η ∈ R) can be represented by the following series, that

converges in the sense of the L2–norm:

J̃
(b)
∗

(
−1

2
+ iη, ·

)
=

∞∑

ℓ=0

cℓψℓ(η), (57)

ψℓ(η) denoting the Pollaczek functions defined by

ψℓ(η) =
1√
π
Γ

(
1

2
+ iη

)
Pℓ(η), (58)

Γ being the Euler gamma function, and Pℓ the Pollaczek polynomials [2,16]. The coefficients cℓ
are given by:

cℓ = 2
√
π

∞∑

m=0

(−1)m

m!
G̃(+,b)

(2π) (m+ 1, ·)Pℓ

[
−i
(
m+

1

2

)]
. (59)
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Proof. The Pollaczek polynomials P
(α)
ℓ (η), (η ∈ R), are orthogonal in L2(−∞,+∞) with weight

function (see Refs. [2,16]):

w(η) =
1

π
2(2α−1) |Γ (α+ iη)|2 . (60)

For α = 1/2, the orthogonality property reads:

∫ +∞

−∞

w(η)P
(1/2)
ℓ (η)P

(1/2)
ℓ′ (η) dη = δℓ,ℓ′ ,

(
w(η) =

1

π

∣∣∣∣Γ
(

1

2
+ iη

)∣∣∣∣
2
)
, (61)

(in the following, when α = 1/2, we omit the index α in the notation). Next, we introduce the
following functions, that will be called Pollaczek functions (of index α = 1/2):

ψℓ(η) =
1√
π
Γ

(
1

2
+ iη

)
Pℓ(η), (62)

which form a complete basis in L2(−∞,+∞) [13]. Since J̃
(b)
∗ (ζ, ·) belongs to the Hardy space

H
2
(

C
(+)
(−1+δ)

)
, then J̃

(b)
∗ (−1/2+iη, ·) (η ∈ R) belongs to L2(−∞,+∞). Therefore, we may expand

J̃
(b)
∗ (−1/2 + iη, ·) in terms of Pollaczek functions as follows:

J̃
(b)
∗

(
−1

2
+ iη, ·

)
=

∞∑

ℓ=0

cℓψℓ(η), (63)

where the series at the r.h.s. of (63) converges to J̃
(b)
∗ (−1/2 + iη, ·) in the sense of the L2–norm.

From (63) we get

cℓ =
1√
π

∫ +∞

−∞

J̃
(b)
∗

(
−1

2
+ iη, ·

)
Γ

(
1

2
− iη

)
Pℓ(η) dη. (64)

The integral at the r.h.s. of (64) can be evaluated by the contour integration method along the
path shown in Fig. 2, and taking into account the asymptotic behaviour of the gamma function
given by the Stirling formula. We obtain:

cℓ = 2
√
π

∞∑

m=0

(−1)m

m!
J̃

(b)
∗ (m, ·)Pℓ

[
−i
(
m+

1

2

)]
. (65)

Finally, from (56), (63) and (65) the proof of the lemma follows. ⊓⊔
From (55), when ζ = −1/2 + iη (η ∈ R), we have:

J̃
(b)
∗

(
−1

2
+ iη, ·

)
=

∫ +∞

0

J
(b)
∗ (v, ·) ev/2e−iηv dv. (66)

The r.h.s. of (66) is the Fourier transform of J
(b)
∗ (v, ·)ev/2. Noting that J̃

(b)
∗ (−1/2 + iη, ·) belongs

to L2(−∞,+∞), but not necessarily to L1(−∞,+∞), the inversion of the Fourier transform (66)
holds only as a limit in the mean order two, and can be written as follows:

J
(b)
∗ (v, ·) ev/2 = l.i.m.

η0→+∞

(
1

2π

∫ η0

−η0

J̃
(b)
∗

(
−1

2
+ iη, ·

)
eiηv dη

)
, (v ∈ R

+). (67)

Then, we can prove the following lemma.
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ζ

ζ −  plane

Im

1

ζ

Re2 310
2

Fig. 2. Integration path for the evaluation of integral (64)

Lemma 2. The function J
(b)
∗ (v, ·)ev/2 can be represented by the following expansion that converges

in the sense of the L2–norm:

ev/2J
(b)
∗ (v, ·) =

∞∑

ℓ=0

aℓΦℓ(v), (v ∈ R
+), (68)

where the coefficients aℓ are given by:

aℓ =
√

2

∞∑

m=0

(−1)m

m!
G̃(+,b)

(2π) (m+ 1, ·)Pℓ

[
−i
(
m+

1

2

)]
, (69)

Pℓ being the Pollaczek polynomials, and the functions Φℓ(v) are given by

Φℓ(v) = iℓ
√

2Lℓ(2e
−v) e−e−v

e−v/2, (70)

Lℓ being the Laguerre polynomials.

Proof. Let us observe that

Γ

(
1

2
+ iη

)
=

∫ +∞

0

e−t t(iη−1/2) dt =

∫ +∞

−∞

e−e−v

e−v/2 e−iηv dv = F
{
e−e−v

e−v/2
}
, (71)

where F denotes the Fourier integral operator. Let us note that the function exp(−e−v)e−v/2

belongs to S∞(R), i.e. the Schwartz space of the C∞(R) functions that, together with all their
derivatives, tend to zero, for |v| tending to +∞, faster than any negative power of |v|. Therefore,
we can write (see formula (62)):

ψℓ(η) =
1√
π
F
{
Pℓ

(
−i d
dv

)[
e−e−v

e−v/2
]}

. (72)
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Substituting in expansion (57) to the Pollaczek functions their representation (72), we obtain:

J̃
(b)
∗ (−1

2
+ iη, ·) =

∞∑

ℓ=0

cℓ

{
1√
π
F
[
Pℓ

(
−i d
dv

)(
e−e−v

e−v/2
)]}

. (73)

Let us now apply the operator F−1 to the r.h.s. of (73). If we exchange the integral operator F−1

with the sum, and this is legitimate within the L2–norm convergence, we obtain:

F−1
∞∑

ℓ=0

cℓ

{
1√
π
F
[
Pℓ

(
−i d
dv

)(
e−e−v

e−v/2
)]}

=

∞∑

ℓ=0

cℓ

{
1√
π

[
Pℓ

(
−i d
dv

)(
e−e−v

e−v/2
)]}

.(74)

Finally, recalling formula (67), we obtain the following expansion for the function J
(b)
∗ (v, ·)ev/2:

ev/2J
(b)
∗ (v, ·) =

∞∑

ℓ=0

cℓ√
π
Pℓ

(
−i d
dv

)(
e−e−v

e−v/2
)
, (75)

whose convergence is in the sense of the L2–norm. It can be easily verified that [9]

√
2Pℓ

(
−i d
dv

)(
e−e−v

e−v/2
)

= iℓ
√

2Lℓ

(
2e−v

)
e−e−v

e−v/2, (76)

where Lℓ denotes the Laguerre polynomials.
It can be checked that the polynomials Lℓ(v) = iℓ

√
2Lℓ(2e

−v) are a set of polynomials or-
thonormal on the real line with weight function w(v) = exp(−v) exp(−2e−v), and, consequently,
the set of functions Φℓ(v), defined by formula (70), forms an orthonormal basis in L2(−∞,+∞).

Finally, from (75) we obtain:

ev/2J
(b)
∗ (v, ·) =

∞∑

ℓ=0

aℓ

{
iℓ
√

2Lℓ(2e
−v) e−e−v

e−v/2
}

=
∞∑

ℓ=0

aℓΦℓ(v), (v ∈ R
+), (77)

where aℓ = cℓ/
√

2π, and the functions Φℓ(v) are given by formula (70). ⊓⊔

We now introduce the weighted L2–space L2
(w)[0,+∞), whose norm is defined by:

‖f‖L2
(w)

[0,+∞) =

(∫ +∞

0

w(v) |f(v)|2 dv
)1/2

, (78)

w(v) being a weight function which will be specified in the following. Then we can prove the
following result.

Theorem 2. The jump function J
(+,b)
(0) (v, ·) can be represented by the following expansion:

J
(+,b)
(0) (v, ·) = ev/2

∞∑

ℓ=0

aℓΦℓ(v), (v ∈ R
+), (79)

which converges in the sense of the L2
(w)[0,+∞)–norm, with weight function w(v) = e−v, (v ∈ R

+).
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Proof. We can write:

∥∥∥∥∥J
(+,b)
(0) (v, ·) − ev/2

L∑

ℓ=0

aℓΦℓ(v)

∥∥∥∥∥
L2

(w)
[0,+∞)

=



∫ +∞

0

e−v

∣∣∣∣∣J
(+,b)
(0) (v, ·) − ev/2

L∑

ℓ=0

aℓΦℓ(v)

∣∣∣∣∣

2

dv




1/2

=



∫ +∞

0

∣∣∣∣∣e
v/2J

(b)
∗ (v, ·) −

L∑

ℓ=0

aℓΦℓ(v)

∣∣∣∣∣

2

dv




1/2

. (80)

In view of Lemma 2 we can thus state that:

lim
L→∞

∥∥∥∥∥J
(+,b)
(0) (v, ·) − ev/2

L∑

ℓ=0

aℓΦℓ(v)

∥∥∥∥∥
L2

(w)
[0,+∞)

= 0, (81)

that proves the statement. ⊓⊔

Consider now a system of fermions. In this case the function G(+)(τ, ·) is antiperiodic with
period β. Then, if we put ζm = (2m+ 1)π/β (m = 0, 1, 2, . . . ) and β = 2π, we have the following
expansion:

G(+)(τ, ·) =
1

2π

∞∑

m=0

G̃(+,f)
(2π)

(
m+

1

2
, ·
)
e−i(m+1/2)τ , (82)

G̃(+,f)
(2π)

(
m+

1

2
, ·
)

=

∫ 2π

0

G(+)(τ, ·) ei(m+1/2)τ dτ =
1

2
G̃(+,f)

(
m+

1

2
, ·
)
. (83)

Recalling once again the antiperiodicity of G(+)(τ, ·), we write the Froissart–Gribov equalities (40)
in the following form:

G̃(+,f)

(
m+

1

2
, ·
)

= J̃
(+,f)
(0)

(
m+

1

2
, ·
)
− J̃

(+,f)
(2π)

(
m+

1

2
, ·
)

= 2 J̃
(+,f)
(0)

(
m+

1

2
, ·
)

= 2 G̃(+,f)
(2π)

(
m+

1

2
, ·
)
, (m = 0, 1, 2, . . . ). (84)

We can now proceed in a way strictly analogous to that followed in the case of bosons. We put:

J
(f)
∗ (v, ·) = e−vJ

(+,f)
(0) (v, ·) and, accordingly, J̃

(f)
∗ (ζ, ·) =

∫ +∞

0
J

(f)
∗ (v, ·)e−ζvdv (ζ = ξ + iη,Re ζ ≡

ξ > −1 + δ, δ ≥ ǫ > 0). Then, the Froissart–Gribov equalities (84) now read:

J̃
(f)
∗

(
m+

1

2
, ·
)

= G̃(+,f)
(2π)

(
m+

3

2
, ·
)
, (m = 0, 1, 2, . . . ). (85)

We can now state the following theorem.

Theorem 3. i) The function J̃
(f)
∗ (iη, ·), (η ∈ R) can be represented by the following series, that

converges in the sense of the L2–norm:

J̃
(f)
∗ (iη, ·) =

∞∑

ℓ=0

dℓψℓ(η), (86)
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where ψℓ(η) are the Pollaczek functions defined by formula (58), and the coefficients dℓ are given
by:

dℓ = 2
√
π

∞∑

m=0

(−1)m

m!
G̃(+,f)

(2π)

(
m+

3

2
, ·
)
Pℓ

[
−i
(
m+

1

2

)]
, (87)

Pℓ denoting the Pollaczek polynomials.

ii) The function J
(f)
∗ (v, ·) can be represented by the following expansion that converges in the

sense of L2–norm:

J
(f)
∗ (v, ·) =

∞∑

ℓ=0

bℓΦℓ(v), (v ∈ R
+), (88)

where the coefficients bℓ are given by bℓ = dℓ/
√

2π, and the functions Φℓ(v) are defined by formula
(70).

iii) The function J
(+,f)
(0) (v, ·) can be represented by the following expansion:

J
(+,f)
(0) (v, ·) = ev

∞∑

ℓ=0

bℓΦℓ(v), (v ∈ R
+), (89)

that converges in the sense of the L2
(w)[0,+∞)–norm with weight function w(v) = e−2v, (v ∈ R+).

Proof. The proof runs exactly as in the case of the boson statistics, with the only remarkable
difference that we use the Froissart–Gribov equalities (85) instead of (56). ⊓⊔

We can reconstruct, by the use of this method, the function J̃
(f)
∗ (iη, ·) but not the function

J̃
(+,f)
(0) (iη, ·), which is much more interesting from the physical viewpoint. In order to recover

the function J̃
(+,f)
(0) (iη, ·) we must introduce a more restrictive assumption, requiring the function

J̃
(+,f)
(0) (ζ, ·) =

∫ +∞

0
J

(+,f)
(0) (v, ·)e−ζv dv to be holomorphic in the half–plane Re ζ > −γ (γ > 0).

Accordingly, in place of the temperateness condition (25) we assume that J
(+,f)
(0) (v, ·) belongs

to L1[0,+∞) ∩ L2[0,+∞). Here, for the sake of simplicity, we treat only the case of fermions;
analogous considerations hold true also in the case of the boson statistics. We can thus suppose

that the singularities of J̃
(+,f)
(0) (ζ, ·), corresponding to the excited states, all lie in the half–plane

Re ζ < −γ, γ being the smallest damping factor of the spectrum (see Refs. [1,10]). If this is the

case, J̃
(+,f)
(0) (iη, ·) is analytic, and, moreover, belongs also to L2(−∞,+∞). We can thus state the

following result.

Theorem 4. Let us assume that J̃
(+,f)
(0) (ζ, ·) is a function holomorphic in the half–plane Re ζ > −γ

(γ > 0); then J̃
(+,f)
(0) (iη, ·) can be represented by the following expansion that converges in the sense

of the L2–norm:

J̃
(+,f)
(0) (iη, ·) =

∞∑

ℓ=0

d′ℓψℓ(η), (90)
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where ψℓ(η) are the Pollaczek functions defined by formula (58), and the coefficients d′ℓ are given
by:

d′ℓ = 2
√
π

∞∑

m=0

(−1)m

m!
G̃(+,f)

(2π)

(
m+

1

2
, ·
)
Pℓ

[
−i
(
m+

1

2

)]
, (91)

Pℓ denoting the Pollaczek polynomials.

Proof. The proof is strictly analogous to the one followed for proving equality (57), and successively
adapted to the fermion statistics in order to obtain expansion (86). The only remarkable difference

is that now in the expression of the coefficients d′ℓ we have the terms G̃(+,f)
(2π)

(
m+ 1

2 , ·
)

instead of

G̃(+,f)
(2π)

(
m+ 3

2 , ·
)
; therefore all the coefficients corresponding to m = 0, 1, 2, . . . , are involved in the

determination of the function J̃
(+,f)
(0) (iη, ·). ⊓⊔

Analogous methods and results can be worked out for the function J̃
(−,f)
(0) (iη, ·), assuming that

J̃
(−,f)
(0) (ζ, ·) is holomorphic in the half–plane Re ζ < γ (γ > 0). We are then able to reconstruct the

difference J̃
(+,f)
(0) (iη, ·)− J̃ (−,f)

(0) (iη, ·) which leads to the determination of the “spectral density” [17].

4. Reconstruction of the Jump Function in Terms of a Finite Number of Fourier
Coefficients

Up to now we have assumed that all the Fourier coefficients are known, and, in addition, that they
are noiseless; but this assumption is clearly unrealistic. We now suppose that only a finite number of
coefficients are known within a certain degree of approximation. We focus our attention on the case
of the boson statistics, and specifically on the results contained in Lemmas 1 and 2, and Theorem 2.
The case of the fermion statistics can be treated similarly. We can simplify the notation, without

ambiguity, by putting: G̃(+,b)
(2π) (m+ 1, ·) = gm, ev/2J

(b)
∗ (v, ·) = F∗(v), and J

(+,b)
(0) (v, ·) = F (v). Then,

we denote by g
(ǫ)
m the Fourier coefficients G̃(+,b)

(2π) (m + 1, ·) when they are perturbed by noise. We

now assume that only (N + 1) Fourier coefficients are known within an approximation error of

order ǫ: i.e. |g(ǫ)
m − gm| ≤ ǫ (m = 0, 1, 2, . . . , N).

We consider the following finite sums:

a
(ǫ,N)
ℓ =

√
2

N∑

m=0

(−1)

m!
g(ǫ)

m Pℓ

[
−i
(
m+

1

2

)]
. (92)

Accordingly, we have a
(0,∞)
ℓ = aℓ (see (69)). We can then prove the following lemma.

Lemma 3. The following statements hold true:

i)

∞∑

ℓ=0

∣∣∣a(0,∞)
ℓ

∣∣∣
2

= ‖F∗‖2
L2[0,∞) = C, (C = constant). (93)

ii)
∞∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

= +∞. (94)

iii) lim
N→∞
ǫ→0

a
(ǫ,N)
ℓ = a

(0,∞)
ℓ = aℓ, (ℓ = 0, 1, 2, . . . ). (95)
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iv) If k0(ǫ,N) is defined as

k0(ǫ,N) = max

{
k ∈ N :

k∑

ℓ=0

|a(ǫ,N)
ℓ |2 ≤ C

}
, (96)

i.e. it is the largest integer such that
∑k

ℓ=0

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

≤ C, then

lim
N→∞
ǫ→0

k0(ǫ,N) = +∞. (97)

v) The sum

M
(ǫ,N)
k =

k∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

, (k ∈ N), (98)

satisfies the following properties:
a) it increases for increasing values of k;
b) the following relationships hold true:

M
(ǫ,N)
k ≥

∣∣∣a(ǫ,N)
k

∣∣∣
2

∼
k→∞

1

(N !)2
(2k)2N , (N fixed ). (99)

Proof. (i) Equality (93) follows from the Parseval theorem applied to expansion (68), and recalling
that F∗(v) belongs to L2(−∞,+∞).

(ii) Let us rewrite the sums a
(ǫ,N)
ℓ as follows:

a
(ǫ,N)
ℓ =

N∑

m=0

b(ǫ)m Pℓ

[
−i
(
m+

1

2

)]
, (100)

where b
(ǫ)
m =

√
2(−1)mg

(ǫ)
m /m!. Now, we can write the following inequality:

∣∣∣a(ǫ,N)
ℓ

∣∣∣ =

∣∣∣∣∣

N∑

m=0

b(ǫ)m Pℓ

[
−i
(
m+

1

2

)]∣∣∣∣∣

≥
∣∣∣∣b

(ǫ)
N Pℓ

[
−i
(
N +

1

2

)]∣∣∣∣ ·

∣∣∣∣∣∣
1 −

∣∣∣
∑N−1

m=0 b
(ǫ)
m Pℓ

[
−i
(
m+ 1

2

)]∣∣∣
∣∣∣b(ǫ)N Pℓ

[
−i
(
N + 1

2

)]∣∣∣

∣∣∣∣∣∣
. (101)

Let us now recall that in the Appendix of Ref. [9] the asymptotic behaviour of the Pollaczek
polynomials Pℓ[−i(m+ 1/2)] for large values of l (at fixed m) is proved to be:

Pℓ

[
−i
(
m+

1

2

)]
∼

ℓ→∞

(−1)ℓiℓ

m!
(2ℓ)m. (102)

Therefore, we have:
∣∣∣
∑N−1

m=0 b
(ǫ)
m Pℓ

[
−i
(
m+ 1

2

)]∣∣∣
∣∣∣b(ǫ)N Pℓ

[
−i
(
N + 1

2

)]∣∣∣
≤
∑N−1

m=0

∣∣∣b(ǫ)m Pℓ

[
−i
(
m+ 1

2

)]∣∣∣
∣∣∣b(ǫ)N Pℓ

[
−i
(
N + 1

2

)]∣∣∣
∼

ℓ→∞

N−1∑

m=0

∣∣∣∣∣
b
(ǫ)
m

b
(ǫ)
N

∣∣∣∣∣
N !

m!
(2ℓ)m−N −→

ℓ→∞
0.(103)
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From (101), (102) and (103) it follows that for ℓ sufficiently large:

∣∣∣a(ǫ,N)
ℓ

∣∣∣ ∼
ℓ→∞

∣∣∣b(ǫ)N

∣∣∣
N !

(2ℓ)N . (104)

Therefore, limℓ→∞

∣∣∣a(ǫ,N)
ℓ

∣∣∣ = +∞, and statement (ii) follows.

(iii) We can write the difference a
(0,∞)
ℓ − a

(ǫ,N)
ℓ as follows:

a
(0,∞)
ℓ − a

(ǫ,N)
ℓ =

√
2

{
N∑

m=0

(−1)m

m!
(gm − g(ǫ)

m )Pℓ

[
−i
(
m+

1

2

)]

+

∞∑

m=N+1

(−1)m

m!
gmPℓ

[
−i
(
m+

1

2

)]}
. (105)

In view of the fact that the series
√

2
∑∞

m=0
(−1)m

m! gmPℓ[−i(m+ 1
2 )] converges to a

(0,∞)
ℓ , it follows

that the second term in bracket (105) tends to zero as N → ∞. Concerning the first term, we may
write the inequality:

∣∣∣∣∣

N∑

m=0

(−1)m

m!
(gm − g(ǫ)

m )Pℓ

[
−i
(
m+

1

2

)]∣∣∣∣∣ ≤ ǫ

N∑

m=0

1

m!

∣∣∣∣Pℓ

[
−i
(
m+

1

2

)]∣∣∣∣ , (106)

where the inequalities
∣∣∣gm − g

(ǫ)
m

∣∣∣ ≤ ǫ, (m = 0, 1, 2, . . . , N) have been used. Next, by rewriting the

Pollaczek polynomials Pℓ[−i(m+ 1/2)] as

Pℓ

[
−i
(
m+

1

2

)]
=

ℓ∑

j=0

p
(ℓ)
j

(
m+

1

2

)j

, (107)

and, substituting this expression in inequality (106), we obtain:

ǫ
N∑

m=0

1

m!




l∑

j=0

∣∣∣p(ℓ)
j

∣∣∣
(
m+

1

2

)j

 . (108)

Next, we perform the limit for N → ∞. In view of the fact that
∑l

j=0 p
(ℓ)
j (m+ 1/2)j is finite, and

the series
∑∞

m=0(m+ 1/2)j/m! converges, we can exchange the order of the sums and write:

ǫ

l∑

j=0

∣∣∣p(ℓ)
j

∣∣∣
∞∑

m=0

1

m!

(
m+

1

2

)j

. (109)

Finally, performing the limit for ǫ→ 0, and recalling equality (105), statement (iii) is obtained.
(iv) From definition (96) it follows, for k1 = k0 + 1, that:

k1∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

> C. (110)
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Statement (iv) (formula (97)) is proved if we can show that limN→∞
ǫ→0

k1(ǫ,N) = +∞. Let us suppose

that limN→∞
ǫ→0

k1(ǫ,N) is finite. Then there should exist a finite number K (independent of ǫ and

N) such that, for N tending to ∞ and ǫ tending to zero, k1(ǫ,N) ≤ K. Then, from inequality
(110) we have:

C <

k1(ǫ,N)∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

≤
K∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

. (111)

But as N → ∞, ǫ→ 0 we have (recalling also statement (iii) formula (95)):

C <

K∑

ℓ=0

∣∣∣a(0,∞)
ℓ

∣∣∣
2

≤
∞∑

ℓ=0

∣∣∣a(0,∞)
ℓ

∣∣∣
2

= C, (112)

which leads to a contradiction. Then statement (iv) follows.

(v) Concerning statement (a), it follows obviously from definition (98) of M
(ǫ,N)
k . Finally, the first

relationship in (99) is obvious; the second one follows from the asymptotic behavior of Pℓ[−i(m+
1/2)] at large ℓ (for fixed m), i.e. formula (102). ⊓⊔

Remark 1. From statement (v) and formula (97) it follows that the sum M
(ǫ,N)
k presents, for large

values of N and small values of ǫ, a plateau for k ∼ k0.

By truncating expansion (68) we may now introduce an approximation of the function F∗(v) of
the following type:

F
(ǫ,N)
∗ (v) =

k0(ǫ,N)∑

ℓ=0

a
(ǫ,N)
ℓ Φℓ(v), (v ∈ R

+). (113)

Approximation F
(ǫ,N)
∗ (v) is defined through the truncation number k0(ǫ,N); the latter can be

numerically determined by plotting the sum M
(ǫ,N)
k versus k, and exploiting properties (a) and

(b), proved in statement (v) of the previous lemma and the property stated in the remark above
(see also Ref. [9]).

Now, we want to prove that the approximation F
(ǫ,N)
∗ (v) converges asymptotically to F∗(v) in

the sense of the L2–norm, as N → ∞ and ǫ→ 0. We can prove the following theorem.

Theorem 5. The equality

lim
N→∞
ǫ→0

∥∥∥F∗ − F
(ǫ,N)
∗ (v)

∥∥∥
L2[0,+∞)

= 0 (114)

holds true.

Proof. From the Parseval equality it follows that:

∥∥∥F∗ − F
(ǫ,N)
∗

∥∥∥
2

L2[0,+∞)
=

{
∞∑

ℓ=k0+1

∣∣∣a(0,∞)
ℓ

∣∣∣
2

+

k0∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ − a

(0,∞)
ℓ

∣∣∣
2
}
. (115)
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Since
∑∞

ℓ=0

∣∣∣a(0,∞)
ℓ

∣∣∣
2

= C and limN→∞
ǫ→0

k0(ǫ,N) = +∞, it follows that limN→∞
ǫ→0

∑∞

ℓ=k0+1

∣∣∣a(ǫ,N)
ℓ

∣∣∣
2

=

0. It is convenient to rewrite the second term of the r.h.s. of (115) as follows. Let us define:

h
(0,∞)
ℓ =

{
a
(0,∞)
ℓ if ℓ is even,

−ia(0,∞)
ℓ if ℓ is odd,

(116)

h
(ǫ,N)
ℓ =

{
a
(ǫ,N)
ℓ if ℓ is even,

−ia(ǫ,N)
ℓ if ℓ is odd.

(117)

Notice that h
(0,∞)
ℓ and h

(ǫ,N)
ℓ are real, and

∑k0

ℓ=0

∣∣∣a(ǫ,N)
ℓ − a

(0,∞)
ℓ

∣∣∣
2

=
∑k0

ℓ=0

(
h

(ǫ,N)
ℓ − h

(0,∞)
ℓ

)2

.

Next, we introduce the following functions:

H(0,∞)(v) =
∞∑

ℓ=0

h
(0,∞)
ℓ 1[ℓ,ℓ+1[(v), (118)

H(ǫ,N)(v) =

∞∑

ℓ=0

h
(ǫ,N)
ℓ 1[ℓ,ℓ+1[(v), (119)

where 1E is the characteristic function of the set E. From statements (i), (ii) and (iii) of the
previous lemma (formulae (93), (94) and (95)) we obtain:

∫ +∞

0

(
H(0,∞)(v)

)2

dv =
∞∑

ℓ=0

(
h

(0,∞)
ℓ

)2

= C, (120)

∫ +∞

0

(
H(ǫ,N)(v)

)2

dv =

∞∑

ℓ=0

(
h

(ǫ,N)
ℓ

)2

= +∞, (121)

H(ǫ,N)(v) −→
N→∞
ǫ→0

H(0,∞)(v), (v ∈ [0,+∞)). (122)

Hereafter, we assume, for the sake of simplicity and without loss of generality, that every term h
(ǫ,N)
ℓ

is different from zero. Next, let V (ǫ,N) be the unique root of equation
∫ V

0

(
H(ǫ,N)(v)

)2
dv = C.

Let us indeed observe that
∫ V

0

(
H(ǫ,N)(v)

)2
dv is a continuous non–decreasing function which is

zero for V = 0, and +∞ for V → +∞. Furthermore, from statement (iv) of the previous lemma
(formula (97)) we have limN→∞

ǫ→0
V (ǫ,N) = +∞.

Then we can write:

∫ V (ǫ,N)

0

[
H(ǫ,N)(v) −H(0,∞)(v)

]2
dv =

=

∫ +∞

V (ǫ,N)

(
H(0,∞)(v)

)2

dx− 2

∫ V (ǫ,N)

0

H(0,∞)(v)
[
H(ǫ,N)(v) −H(0,∞)(v)

]
dv. (123)
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Next, we perform the limit for N → ∞ and ǫ→ 0. Concerning the first term at the r.h.s. of (123)
we have:

lim
N→∞
ǫ→0

∫ +∞

V (ǫ,N)

(
H(0,∞)(v)

)2

dv = 0. (124)

For what concerns the second term, we introduce the following function:

B(ǫ,N)(v) =

{
H(ǫ,N)(v) −H(0,∞)(v) if 0 ≤ v ≤ V (ǫ,N),
0 if v > V (ǫ,N).

(125)

Then, we have by the use of the Schwarz inequality

∫ +∞

0

∣∣∣B(ǫ,N)(v)
∣∣∣
2

dv ≤ 4C, (N <∞, ǫ > 0). (126)

Moreover, from (122) we have:

B(ǫ,N)(v) −→
N→∞
ǫ→0

0 , v ∈ [0,+∞). (127)

The family of functions {B(ǫ,N)(v)} is bounded in L2[0,+∞), therefore it has a subsequence which
is weakly convergent in L2[0,+∞). The limit of this subsequence is zero. In fact, let us observe that
|B(ǫ,N)(v)| ≤ 2C; then we consider the function B(ǫ,N)(v)φ(v), where φ is an arbitrary element
of the class of functions C∞

c (R+). We then have |B(ǫ,N)(v)φ(v)| ≤ 2C|φ(v)|, and this inequality
does not depend on N and ǫ. In view of the Lebesgue dominated convergence theorem we can then
write (see also limit (127)):

lim
N→∞
ǫ→0

sup

∣∣∣∣
∫ +∞

0

B(ǫ,N)(v)φ(v) dv

∣∣∣∣ = 0. (128)

Since the set of functions C∞
c (R+) is everywhere dense in L2[0,+∞), given an arbitrary function

ψ ∈ L2[0,+∞) and an arbitrary number η > 0, there exists a function φk ∈ C∞
c (R+) such that

‖ψ − φk‖L2[0,+∞) < η. Furthermore, through the Schwarz inequality we have:

∫ +∞

0

∣∣∣B(ǫ,N)(v)[φk(v) − ψ(v)]
∣∣∣ dv ≤

(∫ +∞

0

∣∣∣B(ǫ,N)(v)
∣∣∣
2

dv

)1/2(∫ +∞

0

|φk(v) − ψ(v)|2 dv
)1/2

≤ 2
√
C η. (129)

From (128) and (129) we can conclude that

lim
N→∞
ǫ→0

sup

∣∣∣∣
∫ +∞

0

B(ǫ,N)(v)ψ(v) dv

∣∣∣∣ = 0, (130)

for any ψ ∈ L2[0,+∞).
Next, by using the same type of arguments, we can state that if there is an arbitrary subsequence

belonging to the family {B(ǫ,N)} that weakly converges in L2[0,+∞), then the weak limit of this
subsequence is necessarily zero. Finally, from the uniqueness of the (weak) limit point, it follows
that the whole family {B(ǫ,N)} converges weakly to zero in L2[0,+∞).
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We can thus write:

lim
N→∞
ǫ→0

∫ +∞

0

H(0,∞)(v)B(ǫ,N)(v) dv = 0, (131)

and from equality (123) we have

lim
N→∞
ǫ→0

∫ V (ǫ,N)

0

[
H(ǫ,N)(v) −H(0,∞)(v)

]2
dv = 0. (132)

Since
∑k0

ℓ=0

∣∣∣a(ǫ,N)
ℓ − a

(0,∞)
ℓ

∣∣∣
2

≤
∫ V (ǫ,N)

0

[
H(ǫ,N)(v) −H(0,∞)(v)

]2
dv, we have:

lim
N→∞
ǫ→0

k0∑

ℓ=0

∣∣∣a(ǫ,N)
ℓ − a

(0,∞)
ℓ

∣∣∣
2

= 0, (133)

and, in view of equality (115), the theorem is proved. ⊓⊔

We can then prove the following corollary.

Corollary 1. The following equality holds true:

lim
N→∞
ǫ→0

∥∥∥∥∥∥
F (v) − ev/2

k0(ǫ,N)∑

ℓ=0

a
(ǫ,N)
ℓ Φℓ(v)

∥∥∥∥∥∥
L2

(w)
[0,+∞)

= 0, (134)

L2
(w)[0,+∞) being the weighted L2–space with weight function w(v) = e−v, (v ∈ R+), and the

functions Φℓ(v) are defined by formula (70).

Proof. The statement follows immediately from Theorem 5 by noting that:

∫ +∞

0

∣∣∣∣∣∣
F∗(v) −

k0(ǫ,N)∑

ℓ=0

a
(ǫ,N)
ℓ Φℓ(v)

∣∣∣∣∣∣

2

dv =

∫ +∞

0

e−v

∣∣∣∣∣∣
F (v) − ev/2

k0(ǫ,N)∑

ℓ=0

a
(ǫ,N)
ℓ Φℓ(v)

∣∣∣∣∣∣

2

dv

=

∥∥∥∥∥∥
F (v) − ev/2

k0(ǫ,N)∑

ℓ=0

a
(ǫ,N)
ℓ Φℓ(v)

∥∥∥∥∥∥

2

L2
(w)

[0,+∞)

. (135)

We can thus conclude that the jump function J
(+,b)
(0) (v, ·) = F (v) can be approximated by the

truncated expansion

J
(+,b)
(0) (v, ·) ∼ ev/2

k0(ǫ,N)∑

ℓ=0

a
(ǫ,N)
ℓ Φℓ(v), (v ∈ R

+). � (136)



Reconstructing Thermal Green Functions 23

References

1. Abrikosov, A.A., Gorkov, L.P. and Dryaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics.
Englewood Cliffs: Prentice–Hall, 1963

2. Bateman Manuscript Project: Higher Trascendental Functions. A. Erdelyi, Director. Vol. 2. New York: Krieger,
1953

3. Boas, R.P.: Entire Functions. New York: Academic Press, 1954
4. Bremermann, H.: Distributions, Complex Variables, and Fourier Transforms. Reading: Addison–Wesley, 1965
5. Bros, J. and Buchholz, D.: Axiomatic Analyticity Properties and Representations of Particles in Thermal

Quantum Field Theory. Ann. Inst. H. Poincaré – Physique Theorique 64, 495–521 (1996)
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