525 research outputs found
Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP® Peptides) Conjugated with Different Fluorescent Dyes
Purpose
Acidification of extracellular space promotes tumor development, progression, and invasiveness. pH (low) insertion peptides (pHLIP® peptides) belong to the class of pH-sensitive membrane peptides, which target acidic tumors and deliver imaging and/or therapeutic agents to cancer cells within tumors. Procedures
Ex vivo fluorescent imaging of tissue and organs collected at various time points after administration of different pHLIP® variants conjugated with fluorescent dyes of various polarity was performed. Methods of multivariate statistical analyses were employed to establish classification between fluorescently labeled pHLIP® variants in multidimensional space of spectral parameters.
Results
The fluorescently labeled pHLIP® variants were classified based on their biodistribution profile and ability of targeting of primary tumors. Also, submillimeter-sized metastatic lesions in lungs were identified by ex vivo imaging after intravenous administration of fluorescent pHLIP® peptide.
Conclusions
Different cargo molecules conjugated with pHLIP® peptides can alter biodistribution and tumor targeting. The obtained knowledge is essential for the design of novel pHLIP®-based diagnostic and therapeutic agents targeting primary tumors and metastatic lesions
Challenges in clinical and laboratory diagnosis of androgen insensitivity syndrome: a case report
<p>Abstract</p> <p>Introduction</p> <p>Androgen is a generic term usually applied to describe a group of sex steroid hormones. Androgens are responsible for male sex differentiation during embryogenesis at the sixth or seventh week of gestation, triggering the development of the testes and penis in male fetuses, and are directed by the testicular determining factor: the gene <it>SRY </it>(sex determining region on Y chromosome) located on the short arm of chromosome Y. The differentiation of male external genitalia (penis, scrotum and penile urethra) occurs between the 9th and 13th weeks of pregnancy and requires adequate concentration of testosterone and the conversion of this to another more potent androgen, dihydrotestosterone, through the action of 5α-reductase in target tissues.</p> <p>Case presentation</p> <p>This report describes the case of a teenage girl presenting with a male karyotype, and aims to determine the extension of the mutation that affected the AR gene. A Caucasian girl aged 15 was referred to our laboratory for genetic testing due to primary amenorrhea. Physical examination, karyotype testing and molecular analysis of the androgen receptor were critical in making the correct diagnosis of complete androgen insensitivity syndrome.</p> <p>Conclusions</p> <p>Sex determination and differentiation depend on a cascade of events that begins with the establishment of chromosomal sex at fertilization and ends with sexual maturation at puberty, subsequently leading to fertility. Mutations affecting the <it>AR </it>gene may cause either complete or partial androgen insensitivity syndrome. The case reported here is consistent with complete androgen insensitivity syndrome, misdiagnosed at birth, and consequently our patient was raised both socially and educationally as a female. It is critical that health care providers understand the importance of properly diagnosing a newborn manifesting ambiguous genitalia. Furthermore, a child with a pseudohermaphrodite phenotype should always undergo adequate endocrine and genetic testing to reach a conclusive diagnosis before gender is assigned and surgical interventions are carried out. Our results show that extreme care must be taken in selecting the genetic tools that are utilized for the diagnosis for androgen insensitivity syndrome.</p
The nuclear envelope protein, LAP1B, is a novel protein phosphatase 1 substrate
Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.publishe
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
From Eshu to Obatala: animals used in sacrificial rituals at Candomblé "terreiros" in Brazil
<p>Abstract</p> <p>Background</p> <p>The practice of sacrifice has occurred in several cultures and religions throughout history and still exists today. Candomblé, a syncretical Afro-Brazilian religion, practices the sacrificial ritual called "<it>Orô</it>" by its adherents. The present work aims to document the use of animal species in these sacrificial practices in the cities of Caruaru (PE) and Campina Grande (PB) in Norteastern Brazil, and to further understand the symbolism of these rituals.</p> <p>Methods</p> <p>Semi-structured and unstructured interviews and informal discussions were held with 11 Candomblé priests and priestesses between the months of August 2007 and June 2008. We attended rituals performed at "terreiros" where animals were sacrificed, in order to obtain photographic material and observe the procedures and techniques adopted.</p> <p>Results</p> <p>A total of 29 animal species were used during sacrificial rituals according to the priests and priestesses. These species were classified in 5 taxanomic groups: Molluscs (n = 1), Amphibians (n = 2), Reptiles (n = 2), Birds (n = 10) and Mammals (n = 14). According to Candomblé beliefs, animals are sacrificed and offered to their deities, known as orishas, for the prosperity of all life. There is a relationship between the colour, sex and behaviour of the animal to be sacrificed, and the orisha to whom the animal is going to be offered. The many myths that form the cosmogony of Candomblé can often explain the symbolism of the rituals observed and the animal species sacrificed. These myths are conveyed to adherants by the priests and priestesses during the ceremonies, and are essential to the continuation of this religion.</p> <p>Conclusion</p> <p>Candomblé is a sacrificial religion that uses animals for its liturgical purposes. The principal reason for sacrifice is to please supernatural deities known as orishas in order to keep life in harmony. This is accomplished through feeding them in a spiritual sense through sacrifice, maintaining a perfect link between men and the gods, and a connection between the material world (called <it>Aiyê</it>) and the supernatural world (called <it>Orun</it>).</p
Nanostructured Systems Containing Rutin: In Vitro Antioxidant Activity and Photostability Studies
The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency close to 100%. The in vitro antioxidant activity was evaluated by the formation of free radical ·OH after the exposure of hydrogen peroxide to a UV irradiation system. Rutin-loaded nanostructures showed lower rutin decay rates [(6.1 ± 0.6) 10−3 and (5.1 ± 0.4) 10−3 for nanocapsules and nanoemulsion, respectively] compared to the ethanolic solution [(35.0 ± 3.7) 10−3 min−1] and exposed solution [(40.1 ± 1.7) 10−3 min−1] as well as compared to exposed nanostructured dispersions [(19.5 ± 0.5) 10−3 and (26.6 ± 2.6) 10−3, for nanocapsules and nanoemulsion, respectively]. The presence of the polymeric layer in nanocapsules was fundamental to obtain a prolonged antioxidant activity, even if the mathematical modeling of the in vitro release profiles showed high adsorption of rutin to the particle/droplet surface for both formulations. Rutin-loaded nanostructures represent alternatives to the development of innovative nanomedicines
Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942
Background:
Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb) that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival.Results:
By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of the highly iterated palindrome 1 (HIP1) motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT) could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems.Conclusions:
Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.Financial support was provided by grants BFU2009-12895-C02-01/BMC
(Ministerio de Ciencia e Innovación, Spain), the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 212894 and Prometeo/2009/092 (Conselleria d’Educació, Generalitat
Valenciana, Spain) to A. Moya. Work in the FdlC laboratory was supported by
grants BFU2008-00995/BMC (Spanish Ministry of Education), RD06/0008/1012
(RETICS research network,
Instituto de Salud Carlos III, Spanish Ministry of Health) and LSHM-CT-
2005_019023 (European VI Framework Program). Dr. González-Domenech
was supported by grant from the University of Granada. LD, thanks to
financial support from Facultad de Ciencias, Universidad Nacional Autónoma
de México
A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity
Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains
Suppression of Phospholipase Dγs Confers Increased Aluminum Resistance in Arabidopsis thaliana
Aluminum (Al) toxicity is the major stress in acidic soil that comprises about 50% of the world's arable land. The complex molecular mechanisms of Al toxicity have yet to be fully determined. As a barrier to Al entrance, plant cell membranes play essential roles in plant interaction with Al, and lipid composition and membrane integrity change significantly under Al stress. Here, we show that phospholipase Dγs (PLDγs) are induced by Al stress and contribute to Al-induced membrane lipid alterations. RNAi suppression of PLDγ resulted in a decrease in both PLDγ1 and PLDγ2 expression and an increase in Al resistance. Genetic disruption of PLDγ1 also led to an increased tolerance to Al while knockout of PLDγ2 did not. Both RNAi-suppressed and pldγ1-1 mutants displayed better root growth than wild-type under Al stress conditions, and PLDγ1-deficient plants had less accumulation of callose, less oxidative damage, and less lipid peroxidation compared to wild-type plants. Most phospholipids and glycolipids were altered in response to Al treatment of wild-type plants, whereas fewer changes in lipids occurred in response to Al stress in PLDγ mutant lines. Our results suggest that PLDγs play a role in membrane lipid modulation under Al stress and that high activities of PLDγs negatively modulate plant tolerance to Al
- …