337 research outputs found

    Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation

    Get PDF
    Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceae s. str, Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic

    Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO₂] and temperature

    No full text
    Climate change is resulting in increasing atmospheric [CO₂], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO₂], sustained warming, and drought on leaf dark respiration (R(dark)), and the short-term T response of R(dark) were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO₂], T, and drought treatments. Using high resolution T-response curves of R(dark) measured over the 15-65 °C range, it was found that elevated [CO₂], elevated growth T, and drought had little effect on rates of R(dark) measured at T <35 °C and that there was no interactive effect of [CO₂], growth T, and drought on T response of R(dark). However, drought increased R(dark) at high leaf T typical of heatwave events (35-45 °C), and increased the measuring T at which maximal rates of R(dark) occurred (Tmax) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO₂]. Elevated [CO₂] increased the Q₁₀ of R(dark) (i.e. proportional rise in R(dark) per 10 °C) over the 15-35 °C range, while drought increased Q₁₀ values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of R dark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO₂].This work was funded by the Australian Research Council (ARC FT0991448, DP1093759, and CE140100008, to OKA; and DP0879531, to DTT). This project is supported by funding from the Australian Government Department of Agriculture, Fisheries and Forestry under its Forest Industries Climate Change Research Fund programme. Support for the renovation of the Hawkesbury Forest Experiment tree chambers to improve T and humidity control of the WTC was provided as part of an initiative of the Australian Government through the Education Investment Fund supporting research infrastructure

    Genera of phytopathogenic fungi: GOPHY 3

    Get PDF
    This paper represents the third contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions, information about the pathology, distribution, hosts and disease symptoms for the treated genera, as well as primary and secondary DNA barcodes for the currently accepted species included in these. This third paper in the GOPHY series treats 21 genera of phytopathogenic fungi and their relatives including: Allophoma, Alternaria, Brunneosphaerella, Elsinoe, Exserohilum, Neosetophoma, Neostagonospora, Nothophoma, Parastagonospora, Phaeosphaeriopsis, Pleiocarpon, Pyrenophora, Ramichloridium, Seifertia, Seiridium, Septoriella, Setophoma, Stagonosporopsis, Stemphylium, Tubakia and Zasmidium. This study includes three new genera, 42 new species, 23 new combinations, four new names, and three typifications of older names

    Septoria-like pathogens causing leaf and fruit spot of pistachio

    Get PDF
    Several species of Septoria are associated with leaf and fruit spot of pistachio (Pistacia vera), though their identity has always been confused, making identification problematic. The present study elucidates the taxonomy of the Septoria spp. associated with pistachio, and distinguishes four species associated with this host genus. Partial nucleotide sequence data for five gene loci, ITS, LSU, EF-1a, RPB2 and Btub were generated for a subset of isolates. Cylindroseptoria pistaciae, which is associated with leaf spots of Pistacia lentiscus in Spain, is characterised by pycnidial conidiomata that give rise to cylindrical, aseptate conidia. Two species of Septoria s. str. are also recognised on pistachio, S. pistaciarum, and S. pistaciae. The latter is part of the S. protearum species complex, and appears to be a wide host range pathogen occurring on hosts in several different plant families. Septoria pistacina, a major pathogen of pistachio in Turkey, is shown to belong to Pseudocercospora, and not Septoria as earlier suspected. Other than for its pycnidial conidiomata, it is a typical species of Pseudocercospora based on its smooth, pigmented conidiogenous cells and septate conidia. This phenomenon has also been observed in Pallidocercospora, and seriously questions the value of conidiomatal structure at generic level, which has traditionally been used to separate hyphomycetous from coelomycetous ascomycetes. Other than DNA barcodes to facilitate the molecular identification of these taxa occurring on pistachio, a key is also provided to distinguish species based on morphology

    101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.

    Get PDF
    Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with &gt;95&nbsp;% accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi

    Convergence in phosphorus constraints to photosynthesis in forests around the world

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The photosynthesis and leaf nutrient data reported in the paper are available at https://doi.org/10.6084/m9.figshare.20010485.v1, and the model results are available on the European open-access repository Zenodo at https://doi.org/10.5281/zenodo.6619615. All other data reported in the paper are presented in the supplementary materials.Code availability: The R code used for analyses is at https://github.com/ellswor2/photo_p_repo2.git. The source code for ORCHIDEE is at https://doi.org/10.14768/20200407002.1.Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements

    Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης

    Get PDF
    Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
    corecore