270 research outputs found

    Bisectors of the HARPS Cross-Correlation-Function. The dependence on stellar atmospheric parameters

    Full text link
    Bisectors of the HARPS cross-correlation function (CCF) can discern between planetary radial-velocity (RV) signals and spurious RV signals from stellar magnetic activity variations. However, little is known about the effects of the stellar atmosphere on CCF bisectors or how these effects vary with spectral type and luminosity class. Here we investigate the variations in the shapes of HARPS CCF bisectors across the HR diagram in order to relate these to the basic stellar parameters, surface gravity and temperature. We use archive spectra of 67 well studied stars observed with HARPS and extract mean CCF bisectors. We derive previously defined bisector measures (BIS, v_bot, c_b) and we define and derive a new measure called the CCF Bisector Span (CBS) from the minimum radius of curvature on direct fits to the CCF bisector. We show that the bisector measures correlate differently, and non-linearly with log g and T_eff. The resulting correlations allow for the estimation of log g and T_eff from the bisector measures. We compare our results with 3D stellar atmosphere models and show that we can reproduce the shape of the CCF bisector for the Sun.Comment: 13 pages, 20 figures. Accepted by A&

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming

    Get PDF
    BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information

    Novel and Conserved Protein Macoilin Is Required for Diverse Neuronal Functions in Caenorhabditis elegans

    Get PDF
    Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity

    Local Factors Determine Plant Community Structure on Closely Neighbored Islands

    Get PDF
    Despite the recent popularity of the metacommunity concept, ecologists have not evaluated the applicability of different metacommunity frameworks to insular organisms. We surveyed 50 closely spaced islands in the Thousand-Island Lake of China to examine the role of local (environmental) and regional (dispersal) factors in structuring woody plant assemblages (tree and shrub species) on these islands. By partitioning the variation in plant community structure into local and regional causes, we showed that local environmental conditions, specifically island morphometric characteristics, accounted for the majority of the variation in plant community structure among the studied islands. Spatial variables, representing the potential importance of species dispersal, explained little variation. We conclude that one metacommunity framework–species sorting–best characterizes these plant communities. This result reinforces the idea that the traditional approach of emphasizing the local perspective when studying ecological communities continues to hold its value

    Root-Knot Nematodes Exhibit Strain-Specific Clumping Behavior That Is Inherited as a Simple Genetic Trait

    Get PDF
    Root-knot nematodes are obligate parasites of a wide range of plant species and can feed only on the cytoplasm of living plant cells. In the absence of a suitable plant host, infective juveniles of strain VW9 of the Northern root-knot nematode, Meloidogyne hapla, when dispersed in Pluronic F-127 gel, aggregate into tight, spherical clumps containing thousands of worms. Aggregation or clumping behavior has been observed in diverse genera in the phylum Nematoda spanning free-living species such as Caenorhabditis elegans as well as both plant and animal parasites. Clumping behavior differs between strains of M. hapla and occurs with other species within this genus where strain-specific differences in clumping ability are also apparent. Exposure of M. hapla juveniles to a gradient formed using low levels of cyanide promotes formation of clumps at a preferred cyanide level. Analysis of F2 lines from a cross of M. hapla strains that differ in clump-forming behavior reveals that the behavior segregates as a single, major locus that can be positioned on the genetic map of this nematode. Clumping behavior may be a survival strategy whose importance and function depend on the niche of the nematode strain or species

    From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems

    Get PDF
    Human impact on biodiversity usually is measured by reduction in species abundance or richness. Just as important, but much more difficult to discern, is the anthropogenic elimination of ecological interactions. Here we report on the persistence of a long ecological interaction chain linking diverse food webs and habitats in the near-pristine portions of a remote Pacific atoll. Using biogeochemical assays, animal tracking, and field surveys we show that seabirds roosting on native trees fertilize soils, increasing coastal nutrients and the abundance of plankton, thus attracting manta rays to native forest coastlines. Partnered observations conducted in regions of this atoll where native trees have been replaced by human propagated palms reveal that this complex interaction chain linking trees to mantas readily breaks down. Taken together these findings provide a compelling example of how anthropogenic disturbance may be contributing to widespread reductions in ecological interaction chain length, thereby isolating and simplifying ecosystems

    Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins

    Get PDF
    Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin ( Eudyptes chrysocome ) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1-3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour

    Seabird Modulations of Isotopic Nitrogen on Islands

    Get PDF
    The transport of nutrients by migratory animals across ecosystem boundaries can significantly enrich recipient food webs, thereby shaping the ecosystems’ structure and function. To illustrate the potential role of islands in enabling the transfer of matter across ecosystem boundaries to be gauged, we investigated the influence of seabirds on nitrogen input on islands. Basing our study on four widely differing islands in terms of their biogeography and ecological characteristics, sampled at different spatial and temporal intervals, we analyzed the nitrogen isotopic values of the main terrestrial ecosystem compartments (vascular plants, arthropods, lizards and rodents) and their relationship to seabird values. For each island, the isotopic values of the ecosystem were driven by those of seabirds, which ultimately corresponded to changes in their marine prey. First, terrestrial compartments sampled within seabird colonies were the most enriched in δ15N compared with those collected at various distances outside colonies. Second, isotopic values of the whole terrestrial ecosystems changed over time, reflecting the values of seabirds and their prey, showing a fast turnover throughout the ecosystems. Our results demonstrate that seabird-derived nutrients not only spread across the terrestrial ecosystems and trophic webs, but also modulate their isotopic values locally and temporally on these islands. The wealth of experimental possibilities in insular ecosystems justifies greater use of these model systems to further our understanding of the modalities of trans-boundary nutrient transfers

    Modulators of Cytoskeletal Reorganization in CA1 Hippocampal Neurons Show Increased Expression in Patients at Mid-Stage Alzheimer's Disease

    Get PDF
    During the progression of Alzheimer's disease (AD), hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB) III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF) receptor tyrosine kinase B (TrkB), mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression
    corecore