839 research outputs found

    Long-term, multiwavelength light curves of ultra-cool dwarfs: II. The evolving light curves of the T2. 5 SIMP 0136 & the uncorrelated light curves of the M9 TVLM 513

    Full text link
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low- mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ∼3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ∼4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence

    Oscillators and relaxation phenomena in Pleistocene climate theory

    Get PDF
    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited by changes in the surface freshwater surface balance. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages, Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), as a contribution to the Proceedings of the workshop on Stochastic Methods in Climate Modelling, Newton Institute (23-27 August). Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on request to author and on http://www.uclouvain.be/ito

    The GROUSE project II: Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b

    Full text link
    Context: Only recently it has become possible to measure the thermal emission from hot-Jupiters at near-Infrared wavelengths using ground-based telescopes, by secondary eclipse observations. This allows the planet flux to be probed around the peak of its spectral energy distribution, which is vital for the understanding of its energy budget. Aims: The aim of the reported work is to measure the eclipse depth of the planet HAT-P-1b at 2.2micron. This planet is an interesting case, since the amount of stellar irradiation it receives falls in between that of the two best studied systems (HD209458 and HD189733), and it has been suggested to have a weak thermal inversion layer. Methods: We have used the LIRIS instrument on the William Herschel Telescope (WHT) to observe the secondary eclipse of HATP-1b in the Ks-band, as part of our Ground-based secondary eclipse (GROUSE) project. The observations were done in staring mode, while significantly defocusing the telescope to avoid saturation on the K=8.4 star. With an average cadence of 2.5 seconds, we collected 6520 frames during one night. Results: The eclipse is detected at the 4sigma level, the measured depth being 0.109+/-0.025%. The uncertainties are dominated by residual systematic effects, as estimated from different reduction/analysis procedures. The measured depth corresponds to a brightness temperature of 2136+150-170K. This brightness temperature is significantly higher than those derived from longer wavelengths, making it difficult to fit all available data points with a plausible atmospheric model. However, it may be that we underestimate the true uncertainties of our measurements, since it is notoriously difficult to assign precise statistical significance to a result when systematic effects are important.Comment: 7 pages, 10 figures, Accepted for publication in A&

    Transit Detection in the MEarth Survey of Nearby M Dwarfs: Bridging the Clean-First, Search-Later Divide

    Full text link
    In the effort to characterize the masses, radii, and atmospheres of potentially habitable exoplanets, there is an urgent need to find examples of such planets transiting nearby M dwarfs. The MEarth Project is an ongoing effort to do so, as a ground-based photometric survey designed to detect exoplanets as small as 2 Earth radii transiting mid-to-late M dwarfs within 33 pc of the Sun. Unfortunately, identifying transits of such planets in photometric monitoring is complicated both by the intrinsic stellar variability that is common among these stars and by the nocturnal cadence, atmospheric variations, and instrumental systematics that often plague Earth-bound observatories. Here we summarize the properties of MEarth data gathered so far, and we present a new framework to detect shallow exoplanet transits in wiggly and irregularly-spaced light curves. In contrast to previous methods that clean trends from light curves before searching for transits, this framework assesses the significance of individual transits simultaneously while modeling variability, systematics, and the photometric quality of individual nights. Our Method for Including Starspots and Systematics in the Marginalized Probability of a Lone Eclipse (MISS MarPLE) uses a computationally efficient semi-Bayesian approach to explore the vast probability space spanned by the many parameters of this model, naturally incorporating the uncertainties in these parameters into its evaluation of candidate events. We show how to combine individual transits processed by MISS MarPLE into periodic transiting planet candidates and compare our results to the popular Box-fitting Least Squares (BLS) method with simulations. By applying MISS MarPLE to observations from the MEarth Project, we demonstrate the utility of this framework for robustly assessing the false alarm probability of transit signals in real data. [slightly abridged]Comment: accepted to the Astronomical Journal, 21 pages, 12 figure

    Magnetic activity and differential rotation in the very young star KIC 8429280

    Full text link
    We present a spectroscopic/photometric analysis of the rapid rotator KIC8429280, discovered by ourselves as a very young star and observed by the Kepler mission. We use spectroscopic/photometric ground-based data to derive stellar parameters, and we adopt a spectral subtraction technique to highlight the chromospheric emission in the cores of Halpha, CaII H&K and IRT lines. We fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. We find that KIC8429280 is a cool (K2V) star with an age of ~50 Myr, based on its Li content, that has passed its T Tau phase and is spinning up approaching the ZAMS. Its high level of chromospheric activity is indicated by the radiative losses in CaII H&K and IRT, Halpha, and Hbeta lines. Furthermore, its Balmer decrement and the flux ratio of CaII IRT lines imply that these lines are mainly formed in optically-thick sources analogue to solar plages. The analysis of the Kepler data uncovers evidence of at least 7 enduring spots. Since the star's inclination is rather high, ~70{\deg}, the assignment of the spots to the northern/southern hemisphere is not unambiguous. We find at least 3 solutions with nearly the same level of residuals. The distribution of the active regions is such that the spots are located around 3 latitude belts, i.e. the equator and +-(50{\deg}-60{\deg}), with the high-latitude spots rotating slower than the low-latitude ones. The equator-to-pole differential rotation ~0.27 rad/d is at variance with some recent mean-field models of differential rotation in rapidly rotating MS stars, which predict a much smaller latitudinal shear. Our results are consistent with the scenario of a higher differential rotation, which changes along the magnetic cycle.Comment: 12 pages, 13 figures, 5 tables. Accepted by Astronomy and Astrophysics. The abstract has been significantly shortene

    Why growth equals power - and why it shouldn't : constructing visions of China

    Get PDF
    When discussing the success of China's transition from socialism, there is a tendency to focus on growth figures as an indication of performance. Whilst these figures are indeed impressive, we should not confuse growth with development and assume that the former necessarily automatically generates the latter. Much has been done to reduce poverty in China, but the task is not as complete as some observers would suggest; particularly in terms of access to health, education and welfare, and also in dealing with relative (rather than absolute) depravation and poverty. Visions of China have been constructed that exaggerate Chinese development and power in the global system partly to serve political interests, but partly due to the failure to consider the relationship between growth and development, partly due to the failure to disaggregate who gets what in China, and partly due to the persistence of inter-national conceptions of globalised production, trade, and financial flows

    MOST detects variability on tau Bootis possibly induced by its planetary companion

    Full text link
    (abridged) There is considerable interest in the possible interaction between parent stars and giant planetary companions in 51 Peg-type systems. We demonstrate from MOST satellite photometry and Ca II K line emission that there has been a persistent, variable region on the surface of tau Boo A which tracked its giant planetary companion for some 440 planetary revolutions and lies ~68deg (phi=0.8) in advance of the sub-planetary point. The light curves are folded on a range of periods centered on the planetary orbital period and phase dependent variability is quantified by Fourier methods and by the mean absolute deviation (MAD) of the folded data for both the photometry and the Ca II K line reversals. The region varies in brightness on the time scale of a rotation by ~1 mmag. In 2004 it resembled a dark spot of variable depth, while in 2005 it varied between bright and dark. Over the 123 planetary orbits spanned by the photometry the variable region detected in 2004 and in 2005 are synchronised to the planetary orbital period within 0.0015 d. The Ca II K line in 2001, 2002 and 2003 also shows enhanced K-line variability centered on phi=0.8, extending coverage to some 440 planetary revolutions. The apparently constant rotation period of the variable region and its rapid variation make an explanation in terms of conventional star spots unlikely. The lack of complementary variability at phi=0.3 and the detection of the variable region so far in advance of the sub-planetary point excludes tidal excitation, but the combined photometric and Ca II K line reversal results make a good case for an active region induced magnetically on the surface of tau Boo A by its planetary companion.Comment: 7 pages, 7 figures; accepted for publication in A&

    Family and Gender Values in China

    Get PDF
    Previous research has reported on structural changes in Chinese families. However, questions remain as to whether/how social change has influenced family and gender values and how this differs across generations, regions, and gender in China. Drawing on 2006 data from the China General Social Survey, we find that values pertaining to filial piety are traditional, whereas patrilineal and gender values are less traditional. Historic events/policies provide the context for how social change can shape differential generational, geographic, and gender perspectives. Our hypothesis that generation, region, and gender associations will differ across the various ideational domains is confirmed. We find significant interaction effects in how generation and geography differ by gender in patrilineal, filial piety, and gender values; and higher education erodes patrilineal and traditional gender values but enhances filial piety. Such findings indicate that family values should be understood in the specific sociocultural contexts governing Chinese families across time and place.</jats:p

    Transiting Disintegrating Planetary Debris around WD 1145+017

    Full text link
    More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October 7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure
    corecore