146 research outputs found

    m-Calpain is required for preimplantation embryonic development in mice

    Get PDF
    BACKGROUND: μ-calpain and m-calpain are ubiquitously expressed proteases implicated in cellular migration, cell cycle progression, degenerative processes and cell death. These heterodimeric enzymes are composed of distinct catalytic subunits, encoded by Capn1 (μ-calpain) or Capn2 (m-calpain), and a common regulatory subunit encoded by Capn4. Disruption of the mouse Capn4 gene abolished both μ-calpain and m-calpain activity, and resulted in embryonic lethality, thereby suggesting essential roles for one or both of these enzymes during mammalian embryogenesis. Disruption of the Capn1 gene produced viable, fertile mice implying that either m-calpain could compensate for the loss of μ-calpain, or that the loss of m-calpain was responsible for death of Capn4(-/- )mice. RESULTS: To distinguish between the alternatives described above, we deleted an essential coding region in the mouse Capn2 gene in embryonic stems cells and transmitted this mutant allele through the mouse germline. Breeding of heterozygous animals failed to produce homozygous mutant live offspring or implanted embryos. A nested PCR genotyping protocol was established, and homozygous preimplantation mutant embryos were detected at the morula but not at the blastocyts stage. CONCLUSION: We conclude that homozygous disruption of the Capn2 gene results in pre-implantation embryonic lethality between the morula and blastocyst stage. This establishes that μ-calpain and m-calpain have distinct functions, and that m-calpain is vital for development of the preimplantation murine embryo

    Transplanted Long-Term Cultured Pre-Bi Cells Expressing Calpastatin Are Resistant to B Cell Receptor–Induced Apoptosis

    Get PDF
    Long-term cultured pre-B cells are able to differentiate into immunoglobulin (Ig)M-positive B cells (IgM+ cells) when transplanted into severe combined immunodeficient (SCID) mice. Based on previous studies, here we report the development of a reconstitution assay in nonobese diabetic/SCID (NOD/SCID) mice using pre-B cells, which allows us to study the role of calpains (calcium-activated endopeptidases) during B cell development as well as in B cell clonal deletion. Using this model, we show that calpastatin (the natural inhibitor of calpains) inhibits B cell receptor–induced apoptosis in IgM+ cells derived from transplanted mice. We thus hypothesize an important function for calpain in sculpting the B cell repertoire

    Characterization of Human DNA Polymerase Delta and Its Subassemblies Reconstituted by Expression in the Multibac System

    Get PDF
    Mammalian DNA polymerase δ (Pol δ), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and DNA repair processes. We have reconstituted human Pol δ complexes in insect cells infected with a single baculovirus into which one or more subunits were assembled. This system allowed for the efficient expression of the tetrameric Pol δ holoenzyme, the p125/p50 core dimer, the core+p68 trimer and the core+p12 trimer, as well as the p125 catalytic subunit. These were isolated in milligram amounts with reproducible purity and specific activities by a highly standardized protocol. We have systematically compared their activities in order to gain insights into the roles of the p12 and p68 subunits, as well as their responses to PCNA. The relative specific activities (apparent kcat) of the Pol δ holoenzyme, core+p68, core+p12 and p125/p50 core were 100, 109, 40, and 29. The corresponding apparent Kd's for PCNA were 7.1, 8.7, 9.3 and 73 nM. Our results support the hypothesis that Pol δ interacts with PCNA through multiple interactions, and that there may be a redundancy in binding interactions that may permit Pol δ to adopt flexible configurations with PCNA. The abilities of the Pol δ complexes to fully extend singly primed M13 DNA were examined. All the subassemblies except the core+p68 were defective in their abilities to completely extend the primer, showing that the p68 subunit has an important function in synthesis of long stretches of DNA in this assay. The core+p68 trimer could be reconstituted by addition of p12

    GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites

    Get PDF
    As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/

    MDL28170, a Calpain Inhibitor, Affects Trypanosoma cruzi Metacyclogenesis, Ultrastructure and Attachment to Rhodnius prolixus Midgut

    Get PDF
    BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. CONCLUSIONS/SIGNIFICANCE: The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of these molecules on the interaction with both invertebrate and vertebrate hosts, it is interesting to improve knowledge on these molecules in T. cruzi

    Pathway Analysis for Genome-Wide Association Study of Basal Cell Carcinoma of the Skin

    Get PDF
    Recently, a pathway-based approach has been developed to evaluate the cumulative contribution of the functionally related genes for genome-wide association studies (GWASs), which may help utilize GWAS data to a greater extent.In this study, we applied this approach for the GWAS of basal cell carcinoma (BCC) of the skin. We first conducted the BCC GWAS among 1,797 BCC cases and 5,197 controls in Caucasians with 740,760 genotyped SNPs. 115,688 SNPs were grouped into gene transcripts within 20 kb in distance and then into 174 Kyoto Encyclopedia of Genes and Genomes pathways, 205 BioCarta pathways, as well as two positive control gene sets (pigmentation gene set and BCC risk gene set). The association of each pathway with BCC risk was evaluated using the weighted Kolmogorov-Smirnov test. One thousand permutations were conducted to assess the significance.Both of the positive control gene sets reached pathway p-values<0.05. Four other pathways were also significantly associated with BCC risk: the heparan sulfate biosynthesis pathway (p  =  0.007, false discovery rate, FDR  =  0.35), the mCalpain pathway (p  =  0.002, FDR  =  0.12), the Rho cell motility signaling pathway (p  =  0.011, FDR  =  0.30), and the nitric oxide pathway (p  =  0.022, FDR  =  0.42).We identified four pathways associated with BCC risk, which may offer new insights into the etiology of BCC upon further validation, and this approach may help identify potential biological pathways that might be missed by the standard GWAS approach

    Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells.

    Get PDF
    Microbial products, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4), regulate the lifespan of dendritic cells (DCs) by largely undefined mechanisms. Here, we identify a role for calcium-calmodulin–dependent kinase IV (CaMKIV) in this survival program. The pharmacologic inhibition of CaMKs as well as ectopic expression of kinase-inactive CaMKIV decrease the viability of monocyte-derived DCs exposed to bacterial LPS. The defect in TLR4 signaling includes a failure to accumulate the phosphorylated form of the cAMP response element-binding protein (pCREB), Bcl-2, and Bcl-xL. CaMKIV null mice have a decreased number of DCs in lymphoid tissues and fail to accumulate mature DCs in spleen on in vivo exposure to LPS. Although isolated Camk4(−/−) DCs are able to acquire the phenotype typical of mature cells and release normal amounts of cytokines in response to LPS, they fail to accumulate pCREB, Bcl-2, and Bcl-xL and therefore do not survive. The transgenic expression of Bcl-2 in CaMKIV null mice results in full recovery of DC survival in response to LPS. These results reveal a novel link between TLR4 and a calcium-dependent signaling cascade comprising CaMKIV-CREB-Bcl-2 that is essential for DC survival

    Calpain and PARP Activation during Photoreceptor Cell Death in P23H and S334ter Rhodopsin Mutant Rats

    Get PDF
    Retinitis pigmentosa (RP) is a heterogeneous group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness. Many human cases are caused by mutations in the rhodopsin gene. An important question regarding RP pathology is whether different genetic defects trigger the same or different cell death mechanisms. To answer this question, we analysed photoreceptor degeneration in P23H and S334ter transgenic rats carrying rhodopsin mutations that affect protein folding and sorting respectively. We found strong activation of calpain and poly(ADP-ribose) polymerase (PARP) in both mutants, concomitant with calpastatin down-regulation, increased oxidative DNA damage and accumulation of PAR polymers. These parameters were strictly correlated with the temporal progression of photoreceptor degeneration, mirroring earlier findings in the phosphodiesterase-6 mutant rd1 mouse, and suggesting execution of non-apoptotic cell death mechanisms. Interestingly, activation of caspases-3 and -9 and cytochrome c leakage—key events in apoptotic cell death—were observed only in the S334ter mutant, which also showed increased expression of PARP-1. The identification of the same metabolic markers triggered by different mutations in two different species suggests the existence of common cell death mechanisms, which is a major consideration for any mutation independent treatment

    Offspring Production among the Extended Relatives of Samoan Men and Fa'afafine

    Get PDF
    Androphilia refers to sexual attraction to adult males, whereas gynephilia refers to sexual attraction to adult females. Male androphilia is an evolutionary paradox. Its development is at least partially influenced by genetic factors, yet male androphiles exhibit lower reproductive output, thus raising the question of how genetic factors underlying its development persist. The sexual antagonism hypothesis posits that the fitness costs associated with genetic factors underlying male androphilia are offset because these same factors lead to elevated reproduction on the part of the female relatives of androphilic males. Western samples drawn from low fertility populations have yielded inconsistent results when testing this hypothesis. Some studies documented elevated reproduction among the matrilineal female kin of androphilic males, whereas others found such effects in the paternal line. Samoa is a high-fertility population in which individuals reproduce closer to their maximum capacities. This study compared the reproductive output of the paternal and maternal line grandmothers, aunts, and uncles of 86 Samoan androphilic males, known locally as fa'afafine, and 86 Samoan gynephilic males. Reproductive output was elevated in the paternal and maternal line grandmothers, but not aunts or uncles, of fa'afafine. These findings are consistent with the sexual antagonism hypothesis and suggest that male androphilia is associated with elevated reproduction among extended relatives in both the maternal and paternal line. Discussion focuses on how this study, in conjunction with the broader literature, informs various models for the evolution of male androphilia via elevated reproduction on the part of female kin
    • …
    corecore