24 research outputs found

    Rickettsia monacensis and Human Disease, Spain

    Get PDF
    We identified Rickettsia monacensis as a cause of acute tickborne rickettsiosis in 2 humans. Its pathogenic role was assessed by culture and detection of the organism in patients’ blood samples. This finding increases the number of recognized human rickettsial pathogens and expands the known geographic distribution of Mediterranean spotted fever–like cases

    Molecular method for the characterization of Coxiella burnetii from clinical and environmental samples: variability of genotypes in Spain

    Get PDF
    BACKGROUND: Coxiella burnetii is a highly clonal microorganism which is difficult to culture, requiring BSL3 conditions for its propagation. This leads to a scarce availability of isolates worldwide. On the other hand, published methods of characterization have delineated up to 8 different genomic groups and 36 genotypes. However, all these methodologies, with the exception of one that exhibited limited discriminatory power (3 genotypes), rely on performing between 10 and 20 PCR amplifications or sequencing long fragments of DNA, which make their direct application to clinical samples impracticable and leads to a scarce accessibility of data on the circulation of C. burnetii genotypes. RESULTS: To assess the variability of this organism in Spain, we have developed a novel method that consists of a multiplex (8 targets) PCR and hybridization with specific probes that reproduce the previous classification of this organism into 8 genomic groups, and up to 16 genotypes. It allows for a direct characterization from clinical and environmental samples in a single run, which will help in the study of the different genotypes circulating in wild and domestic cycles as well as from sporadic human cases and outbreaks. The method has been validated with reference isolates. A high variability of C. burnetii has been found in Spain among 90 samples tested, detecting 10 different genotypes, being those adaA negative associated with acute Q fever cases presenting as fever of intermediate duration with liver involvement and with chronic cases. Genotypes infecting humans are also found in sheep, goats, rats, wild boar and ticks, and the only genotype found in cattle has never been found among our clinical samples. CONCLUSIONS: This newly developed methodology has permitted to demonstrate that C. burnetii is highly variable in Spain. With the data presented here, cattle seem not to participate in the transmission of C. burnetii to humans in the samples studied, while sheep, goats, wild boar, rats and ticks share genotypes with the human population

    Epidemiological and Genomic Analysis of a Large SARS-CoV-2 Outbreak in a Long-Term Care Facility in Catalonia, Spain

    Get PDF
    9 páginas, 3 figuras, 1 tabla.Limiting outbreaks in long-term care facilities (LTCFs) is a cornerstone strategy to avoid an excess of COVID-19-related morbidity and mortality and to reduce its burden on the health system. We studied a large outbreak that occurred at an LTCF, combining methods of classical and genomic epidemiology analysis. The outbreak lasted for 31 days among residents, with an attack rate of 98% and 57% among residents and staff, respectively. The case fatality rate among residents was 16% (n = 15). Phylogenetic analysis of 59 SARS-CoV-2 isolates revealed the presence of two closely related viral variants in all cases (B.1.177 lineage), revealing a far more complex outbreak than initially thought and suggesting an initial spread driven by staff members. In turn, our results suggest that resident relocations to mitigate viral spread might have increased the risk of infection for staff members, creating secondary chains of transmission that were responsible for prolonging the outbreak. Our results highlight the importance of considering unnoticed chains of transmission early during an outbreak and making an adequate use and interpretation of diagnostic tests. Outbreak containment measures should be carefully tailored to each LTCF. IMPORTANCE The impact of COVID-19 on long-term care facilities (LTCFs) has been disproportionately large due to the high frailty of the residents. Here, we report epidemiological and genomic findings of a large outbreak that occurred at an LTCF, which ultimately affected almost all residents and nearly half of staff members. We found that the outbreak was initially driven by staff members; however, later resident relocation to limit the outbreak resulted in transmission from residents to staff members, evidencing the complexity and different phases of the outbreak. The phylogenetic analysis of SARS-CoV-2 isolates indicated that two closely related variants were responsible for the large outbreak. Our study highlights the importance of combining methods of classical and genomic epidemiology to take appropriate outbreak containment measures in LTCFsWe thank the CERCA Program/Generalitat de Catalunya for their support of the Germans Trias i Pujol Research Institute (IGTP). We thank the IGTP Translational Genomics Core Facility and staff for their contribution to this publication. Funding from the Instituto de Salud Carlos III project COV20/00140 (SeqCOVID consortium) and the European Commission—Next Generation EU (regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global).Peer reviewe

    Human-caused fire occurrence modelling in perspective: a review

    Full text link

    Molecular Method for Bartonella Species Identification in Clinical and Environmental Samples▿

    No full text
    A new, efficient molecular method for detection of Bartonella, based on the 16S-23S rRNA intergenic spacer and 16S rRNA amplification by multiplex PCR combined with reverse line blotting, was designed. This assay could simultaneously detect 20 different known species and other Bartonella species not described previously

    Genotypes of Coxiella burnetii in wildlife: disentangling the molecular epidemiology of a multi-host pathogen

    No full text
    Evidences point to a relevant role of wildlife in the ecology of Coxiella burnetii worldwide. The lack of information on C. burnetii genotypes in wildlife prevents tracing‐back clinical animal and human Q fever cases with potential wildlife origin. To compare C. burnetii genotypes circulating in wildlife, livestock and humans, 107 samples from red deer, European wild rabbit, racoon, small mammals, goat and sheep were genotyped by polymerase chain reaction and reverse line blot hybridization. Genomic groups I, II, VI and VII were found in wildlife and groups I, II, III and IV in domestic ruminants. Livestock genotypes clustered mainly with genotypes reported previously in livestock. Genotyping confirmed previous findings that suggest that C. burnetii may display host specificity since most genotypes of sympatric deer and rabbits clustered in separate groups. Wildlife genotypes clustered with genotypes from ticks and from acute hepatitis human Q fever cases, suggesting that particular C. burnetii genotypes circulating in a wildlife‐tick cycle may occasionally jump into humans through tick bites or exposure to wildlife. This finding could be behind the reported geographic variation in the clinical presentation of acute Q fever in humans in Spain: atypical pneumonia in the north and hepatitis in the south.This study was funded by European Union FP7 ANTIGONE project (278976) and partly by project RZ2010-00006-C02-01 of the Spanish Ministryfor the Economy and Competitiveness-MINECO. Grant sup-port for this work was also from INIA RTA2013-00051-C02-02 “Estudio de la viabilidad y caracterizaciĂłn de Coxiella burnetiien explotaciones de pequeños rumiantes: dinĂĄmica y evoluciĂłn de sus genotipos e implicaciones en Salud PĂșblica”. F.R-F. acknowledges funding from MINECO through a ‘RamĂłn y Cajal’ research contract. I.G.F-M. wasfunded by ‘Plan Propio de InvestigaciĂłn’ from UCLM.Peer Reviewe

    Molecular method for the characterization of <it>Coxiella burnetii</it> from clinical and environmental samples: variability of genotypes in Spain

    No full text
    Abstract Background Coxiella burnetii is a highly clonal microorganism which is difficult to culture, requiring BSL3 conditions for its propagation. This leads to a scarce availability of isolates worldwide. On the other hand, published methods of characterization have delineated up to 8 different genomic groups and 36 genotypes. However, all these methodologies, with the exception of one that exhibited limited discriminatory power (3 genotypes), rely on performing between 10 and 20 PCR amplifications or sequencing long fragments of DNA, which make their direct application to clinical samples impracticable and leads to a scarce accessibility of data on the circulation of C. burnetii genotypes. Results To assess the variability of this organism in Spain, we have developed a novel method that consists of a multiplex (8 targets) PCR and hybridization with specific probes that reproduce the previous classification of this organism into 8 genomic groups, and up to 16 genotypes. It allows for a direct characterization from clinical and environmental samples in a single run, which will help in the study of the different genotypes circulating in wild and domestic cycles as well as from sporadic human cases and outbreaks. The method has been validated with reference isolates. A high variability of C. burnetii has been found in Spain among 90 samples tested, detecting 10 different genotypes, being those adaA negative associated with acute Q fever cases presenting as fever of intermediate duration with liver involvement and with chronic cases. Genotypes infecting humans are also found in sheep, goats, rats, wild boar and ticks, and the only genotype found in cattle has never been found among our clinical samples. Conclusions This newly developed methodology has permitted to demonstrate that C. burnetii is highly variable in Spain. With the data presented here, cattle seem not to participate in the transmission of C. burnetii to humans in the samples studied, while sheep, goats, wild boar, rats and ticks share genotypes with the human population.</p
    corecore