44 research outputs found

    IL-17 Produced during Trypanosoma cruzi Infection Plays a Central Role in Regulating Parasite-Induced Myocarditis

    Get PDF
    Chagas disease is caused by the intracellular parasite Trypanosoma cruzi. This infection has been considered one of the most neglected diseases and affects several million people in the Central and South America. Around 30% of the infected patients develop digestive and cardiac forms of the disease. Most patients are diagnosed during the chronic phase, when the treatment is not effective. Here, we showed by the first time that IL-17 is produced during experimental T. cruzi infection and that it plays a significant role in host defense, modulating parasite-induced myocarditis. Applying this analysis to humans could be of great value in unraveling the elements involved in the pathogenesis of chagasic cardiopathy and could be used in the development of alternative therapies to reduce morbidity during the chronic phase of the disease, as well as clinical markers of disease progression. The understanding of these aspects of disease may be helpful in reducing the disability-adjusted life years (DALYs) and costs to the public health service in developing countries

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Periodontitis and Alzheimer’s Disease: A Possible Comorbidity between Oral Chronic Inflammatory Condition and Neuroinflammation

    No full text
    Periodontitis is an oral chronic infection/inflammatory condition, identified as a source of mediators of inflammation into the blood circulation, which may contribute to exacerbate several diseases. There is increasing evidence that inflammation plays a key role in the pathophysiology of Alzheimer’s disease (AD). Although inflammation is present in both diseases, the exact mechanisms and crosslinks between periodontitis and AD are poorly understood. Therefore, this article aims to review possible comorbidity between periodontitis and AD. Here, the authors discuss the inflammatory aspects of periodontitis, how this oral condition produces a systemic inflammation and, finally, the contribution of this systemic inflammation for worsening neuroinflammation in the progression of AD

    Morphine Perinatal Exposure Induces Long-Lasting Negative Emotional States in Adult Offspring Rodents

    No full text
    Psychoactive substances during pregnancy and lactation is a key problem in contemporary society, causing social, economic, and health disturbance. In 2010, about 30 million people used opioid analgesics for non-therapeutic purposes, and the prevalence of opioids use during pregnancy ranged from 1% to 21%, representing a public health problem. This study aimed to evaluate the long-lasting neurobehavioral and nociceptive consequences in adult offspring rats and mice exposed to morphine during intrauterine/lactation periods. Pregnant rats and mice were exposed subcutaneously to morphine (10 mg/kg/day) during 42 consecutive days (from the first day of pregnancy until the last day of lactation). Offspring were weighed on post-natal days (PND) 1, 5, 10, 15, 20, 30, and 60, and behavioral tasks (experiment 1) or nociceptive responses (experiment 2) were assessed at 75 days of age (adult life). Morphine-exposed female rats displayed increased spontaneous locomotor activity. More importantly, both males and female rats perinatally exposed to morphine displayed anxiety- and depressive-like behaviors. Morphine-exposed mice presented alterations in the nociceptive responses on the writhing test. This study showed that sex difference plays a role in pain threshold and that deleterious effects of morphine during pre/perinatal periods are nonrepairable in adulthood, which highlights the long-lasting clinical consequences related to anxiety, depression, and nociceptive disorders in adulthood followed by intrauterine and lactation morphine exposure

    Effects of Chronic Ethanol Consumption and Ovariectomy on the Spontaneous Alveolar Bone Loss in Rats

    No full text
    Postmenopausal estrogen deficiency and ethanol (EtOH) abuse are known risk factors for different diseases including bone tissues. However, little is known about the synergic effects of EtOH abuse and estrogen deficiency on alveolar bone loss in women. The present study evaluated the effects of EtOH chronic exposure and ovariectomy on the alveolar bone loss in female rats. For this, 40 female Wistar rats were randomly divided into 4 groups: control, EtOH exposure, ovariectomy (OVX), and OVX plus EtOH exposure. Initially, half of the animals were ovariectomized at 75 days of age. After that, the groups received distilled water or EtOH 6.5 g/kg/day (20% w/v) for 55 days via gavage. Thereafter, animals were sacrificed and the mandibles were collected, dissected, and separated into hemimandibles. Alveolar bone loss was evaluated by measuring the distance between the cementoenamel junction and the alveolar bone crest through a stereomicroscope in 3 different anatomical regions of the tissue. One-way ANOVA and post hoc Tukey were used to compare groups (p<0.05). The results showed that the ovariectomy and EtOH exposure per se were able to induce alveolar bone loss, and their association did intensify significantly the effect. Therefore, OVX associated with heavy EtOH exposure increase the spontaneous alveolar bone loss in rats

    Is Low Non-Lethal Concentration of Methylmercury Really Safe? A Report on Genotoxicity with Delayed Cell Proliferation.

    No full text
    Human exposure to relatively low levels of methylmercury is worrying, especially in terms of its genotoxicity. It is currently unknown as to whether exposure to low levels of mercury (below established limits) is safe. Genotoxicity was already shown in lymphocytes, but studies with cells of the CNS (as the main target organ) are scarce. Moreover, disturbances in the cell cycle and cellular proliferation have previously been observed in neuronal cells, but no data are presently available for glial cells. Interestingly, cells of glial origin accumulate higher concentrations of methylmercury than those of neuronal origin. Thus, the aim of this work was to analyze the possible genotoxicity and alterations in the cell cycle and cell proliferation of a glioma cell line (C6) exposed to a low, non-lethal and non-apoptotic methylmercury concentration. Biochemical (mitochondrial activity) and morphological (integrity of the membrane) assessments confirmed the absence of cell death after exposure to 3 ÎŒM methylmercury for 24 hours. Even without promoting cell death, this treatment significantly increased genotoxicity markers (DNA fragmentation, micronuclei, nucleoplasmic bridges and nuclear buds). Changes in the cell cycle profile (increased mitotic index and cell populations in the S and G2/M phases) were observed, suggesting arrest of the cycle. This delay in the cycle was followed, 24 hours after methylmercury withdrawal, by a decrease number of viable cells, reduced cellular confluence and increased doubling time of the culture. Our work demonstrates that exposure to a low sublethal concentration of MeHg considered relatively safe according to current limits promotes genotoxicity and disturbances in the proliferation of cells of glial origin with sustained consequences after methylmercury withdrawal. This fact becomes especially important, since this cellular type accumulates more methylmercury than neurons and displays a vital role protecting the CNS, especially in chronic intoxication with this heavy metal

    Physical Exercise Attenuates Oxidative Stress and Morphofunctional Cerebellar Damages Induced by the Ethanol Binge Drinking Paradigm from Adolescence to Adulthood in Rats

    No full text
    Ethanol (EtOH) binge drinking is characterized by high EtOH intake during few hours followed by withdrawal. Protection strategies against the damages generated by this binge are poorly explored. Thus, this study is aimed at investigating the protective role of treadmill physical exercise (PE) on the damage caused after repeated cycles of binge-like EtOH exposure in the oxidative biochemistry, morphology, and cerebellar function of rats from adolescence to adulthood. For this, animals were divided into four groups: control group (sedentary animals with doses of distilled water), exercised group (exercised animals with doses of distilled water), EtOH group (sedentary animals with doses of 3 g/kg/day of EtOH, 20% w/v), and exercised+EtOH group (exercised animals with previous mentioned doses of EtOH). The PE occurred on a running treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in a binge-like manner. After the EtOH protocol and PE, animals were submitted to open field and beam walking tests. In sequence, the cerebellums were collected for the biochemical and morphological analyses. Biochemical changes were analyzed by measurement of Trolox equivalent antioxidant capacity (TEAC), reduced glutathione content measurements (GSH), and measurement of nitrite and lipid peroxidation (LPO). In morphological analyses, Purkinje cell density evaluation and immunohistochemistry evaluation were measured by antimyelin basic protein (MBP) and antisynaptophysin (SYP). The present findings demonstrate that the binge drinking protocol induced oxidative biochemistry misbalance, from the decrease of TEAC levels and higher LPO related to tissue damage and motor impairment. In addition, we have shown for the first time that treadmill physical exercise reduced tissue and functional alterations displayed by EtOH exposure
    corecore