64 research outputs found

    POSFET tactile sensing arrays using CMOS technology

    Get PDF
    This work presents fabrication and evaluation of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. In the newer version presented here, the tactile sensing chip has been fabricated using CMOS (Complementary Metal Oxide Semiconductor) technology. The chip consists of 4 x 4 POSFET touch sensing devices (or taxels) and both, the individual taxels and the array are designed to match spatio–temporal performance of the human fingertips. To detect contact events, the taxels utilize the contact forces induced change in the polarization level of piezoelectric polymer (and hence change in the induced channel current of MOS). The POSFET device on the chip have linear response in the tested dynamic contact forces range of 0.01–3 N and the sensitivity (without amplification) is 102.4 mV/N

    Tactile sensing chips with POSFET array and integrated interface electronics

    Get PDF
    This work presents the advanced version of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. The new version of the tactile sensing chip presented here comprises of a 4 x 4 array of POSFET touch sensing devices and integrated interface electronics (i.e. multiplexers, high compliance current sinks and voltage output buffers). The chip also includes four temperature diodes for the measurement of contact temperature. Various components on the chip have been characterized systematically and the overall operation of the tactile sensing system has been evaluated. With new design the POSFET devices have improved performance (i.e. linear response in the dynamic contact forces range of 0.01–3N and sensitivity (without amplification) of 102.4 mV/N), which is more than twice the performance of their previous implementations. The integrated interface electronics result in reduced interconnections which otherwise would be needed to connect the POSFET array with off-chip interface electronic circuitry. This research paves the way for CMOS (Complementary Metal Oxide Semiconductor) implementation of full on-chip tactile sensing systems based on POSFETs

    Through Silicon Vias in MEMS packaging, a review

    Get PDF
    Trough Silicon Via (TSV) is a key enabling technology to achieve the integration of various dies by exploiting the third dimension. This allow the integration of heterogeneous chips in a single package (2.5D integration) or to achieve higher integration densities of transistors (3D integration). These vertical interconnections are widely used for both IC and MEMS devices. This paper reviews TSV technology focusing on their implementation in MEMS sensors with a broad overview on the various fabrication approaches and their constraints in terms of process compatibility. A case study of an inertial MEMS sensor will then be presented.publishedVersio

    Wafer bonding process for zero level vacuum packaging of MEMS

    Get PDF
    It is well known that the packaging of electronic devices is of paramount importance, none more so than in MEMS were fragile mechanical elements are realized. Among the different approaches, wafer to wafer bonding guarantees the advantages of the wafer scaling and provides protection of the devices during the final phase of fabrication. Direct bonding, also known as fusion bonding, is seldom implemented in MEMS fabrication due to the high surface quality required, the high temperature involved and the compulsory wet activation process. In this paper a direct bonding process for MEMS inertial sensor without the need of any wet activation step is presented.acceptedVersio

    Wafer bonding process for zero level vacuum packaging of MEMS

    Get PDF
    It is well known that the packaging of electronic devices is of paramount importance, none more so than in MEMS were fragile mechanical elements are realized. Among the different approaches, wafer to wafer bonding guarantees the advantages of the wafer scaling and provides protection of the devices during the final phase of fabrication. Direct bonding, also known as fusion bonding, is seldom implemented in MEMS fabrication due to the high surface quality required, the high temperature involved and the compulsory wet activation process. In this paper a direct bonding process for MEMS inertial sensor without the need of any wet activation step is presented.acceptedVersio

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Electro-Mechanical Performance Analysis of RF MEMS Switches

    Get PDF
    The feasibility of integrating the RF MEMS switches in space and wireless communication systems has generated tremendous interest in related design, fabrication and characterization methodologies. The space applications make long term reliability of the devices a very pertinent issue and involves both the process and device characterization. In this paper we describe the experimental setup and measurement results on RF MEMS switches fabricated for DC to 30GHz applications. The on-wafer experimental setup, based on standard manual microprobe station provides dual pulse actuation voltage waveforms with programmable period and amplitude. The usefulness of the dual-pulse testing is demonstrated by the minimal charge generation in the dielectric layer and capacitance measurements with negligible variations over long measurement periods

    Quasi-static C-V measurements on RF MEMS test structures

    No full text
    This work analyzes the main aspects related to long term electro-mechanical measurements on RF MEMS switches fabricated for DC to 30GHz; the fabrication process, design, and adopted experimental procedures have been also described in details. Particular attention has been dedicated to the stress effect for studies to different behavior due to applied electric fiel
    • …
    corecore