491 research outputs found

    Failure of compressible/dilatant geomaterials

    Get PDF

    Experimental evaluation of koala scat persistence and detectability with implications for pellet-based fauna census

    Get PDF
    Establishing species distribution and population trends are basic requirements in conservation biology, yet acquiring this fundamental information is often difficult. Indirect survey methods that rely on fecal pellets (scats) can overcome some difficulties but present their own challenges. In particular, variation in scat detectability and decay rate can introduce biases. We studied how vegetation communities affect the detectability and decay rate of scats as exemplified by koalas Phascolarctos cinereus: scat detectability was highly and consistently dependent on ground layer complexity (introducing up to 16% non-detection bias); scat decay rates were highly heterogeneous within vegetation communities; exposure of scats to surface water and rain strongly accelerated scat decay rate and finally, invertebrates were found to accelerate scat decay rate markedly, but unpredictably. This last phenomenon may explain the high variability of scat decay rate within a single vegetation community. Methods to decrease biases should be evaluated when planning scat surveys, as the most appropriate method(s) will vary depending on species, scale of survey and landscape characteristics. Detectability and decay biases are both stronger in certain vegetation communities, thus their combined effect is likely to introduce substantial errors in scat surveys and this could result in inappropriate and counterproductive management decisions

    Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Get PDF
    Background: Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results: We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions: Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive

    A Damage Mechanics Approach to Life Prediction for a Salt Structure

    Full text link
    Excavated rooms in natural bedded salt formations are being considered for use as repositories for nuclear waste. It is presumed that deformation of the rooms by creep will lead to loss of structural integrity and affect room life history and seal efficiency. At projected repository temperatures, two possible fracture mechanisms in salt are creep-induced microcracking in triaxial compression and cleavage in tension. Thus, an accurate prediction of room life and seal degradation requires a reliable description of the creep and damage processes. While several constitutive models that treat either creep or fracture in salt are available in the literature, very few models have considered creep and damage in a coupled manner. Previously, Munson and Dawson formulated a set of creep equations for salt based on the consideration of dislocation mechanisms in the creep process. This set of creep equations has been generalized to include continuum, isotropic damage as a fully coupled variable in the response equation. The extended model has been referred to as the Multimechanism Deformation Coupled Fracture (MDCF) model. A set of material constants for the creep and damage terms was deduced based on test data for both clean and argillaceous salt. In this paper, the use of the MDCF model for establishing the failure criteria and for analyzing the creep response of a salt structure is demonstrated. The paper is divided into three parts. A summary of the MDCF model is presented first, which is followed by an evaluation of the MDCF model against laboratory data. Finally, finite-element calculations of the creep and damage response of a salt structure are presented and compared against in-situ field measurements

    61MO Biomarker analysis of men with enzalutamide (enza)-resistant metastatic castration-resistant prostate cancer (mCRPC) treated with pembrolizumab (pembro) + enza in KEYNOTE-199

    Get PDF
    Background: In KEYNOTE-199 (NCT02787005), pembro + enza had durable antitumor activity in enza-refractory mCRPC. We evaluated the association between prespecified biomarkers and clinical outcomes. Methods: Cohorts 4 (C4; RECIST-measurable disease) and 5 (C5; nonmeasurable, bone-predominant disease) enrolled men with chemotherapy-naive mCRPC, irrespective of PD-L1 status, that progressed after initial response to enza. We evaluated TMB by whole exome sequencing (n = 64), PD-L1 combined positive score (CPS) by IHC (n = 124), and 18-gene T-cell–inflamed gene expression profile (TcellinfGEP) by NanoString (n = 51). Outcomes were DCR, PFS, PSA response, PSA progression, OS, and ORR per blinded independent review (C4 only). Significance of continuous biomarkers (CPS, TMB, GEP) was prespecified at 0.05 for 1-sided P values from logistic (ORR, DCR, PSA response) and Cox proportional hazard (PFS, OS, PSA progression) regression adjusted for ECOG PS. Results: In C4, ORR was 10% (5/48) in pts with evaluable TMB data and 12% (10/81) in pts with CPS data. In C4 and C5, 16% (10/64) and 14% (17/124) of pts with TMB and CPS data, respectively, achieved a PSA response. TMB was significantly associated with DCR (P = 0.03) and trended toward an association with PSA response (P = 0.08). TMB (AUROC [95% CI]: 0.68 [0.51-0.86]), but not CPS (0.54 [0.41-0.67]) or TcellinfGEP (0.55 [0.37-0.74]), enriched for PSA response. TMB (P = 0.04), but not CPS (P = 0.57) or TcellinfGEP (P = 0.32), was significantly associated with PSA progression. There was 1 MSI-H pt (per Promega PCR assay); this pt achieved an objective and PSA response and had PFS \u3e6 months. TMB, CPS, and TcellinfGEP were not associated with PFS or OS. There was a low prevalence of TMB ≥175 mut/exome (11%) and TcellinfGEP-high (≥−0.318; 16%). Conclusions: In this biomarker analysis of KEYNOTE-199 C4-C5, PD-L1 CPS and TcellinfGEP were not significantly associated with clinical outcome. Despite the low prevalence of TMB ≥175 mut/exome, TMB was positively associated with outcomes of pembro + enza in pts with mCRPC. The sample sizes for the exploratory analyses were small, and results should be interpreted with caution

    Removing krypton from xenon by cryogenic distillation to the ppq level

    Get PDF
    The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β\beta-emitter 85^{85}Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon nat\rm{^{nat}}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 1015^{-15} mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\cdot105^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of nat\rm{^{nat}}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN

    Immune Biomarkers in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease in which molecular stratification is needed to improve clinical outcomes. The identification of predictive biomarkers can have a major impact on the care of these patients, but the availability of metastatic tissue samples for research in this setting is limited. OBJECTIVE: To study the prevalence of immune biomarkers of potential clinical utility to immunotherapy in mCRPC and to determine their association with overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: From 100 patients, mCRPC biopsies were assayed by whole exome sequencing, targeted next-generation sequencing, RNA sequencing, tumor mutational burden, T-cell-inflamed gene expression profile (TcellinfGEP) score (Nanostring), and immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), ataxia-telangiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), SRY homology box 2 (SOX2), and the presence of neuroendocrine features. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The phi coefficient determined correlations between biomarkers of interest. OS was assessed using Kaplan-Meier curves and adjusted hazard ratios (aHRs) from Cox regression. RESULTS AND LIMITATIONS: PD-L1 and SOX2 protein expression was detected by immunohistochemistry (combined positive score ≥1 and >5% cells, respectively) in 24 (33%) and 27 (27%) mCRPC biopsies, respectively; 23 (26%) mCRPC biopsies had high TcellinfGEP scores (>-0.318). PD-L1 protein expression and TcellinfGEP scores were positively correlated (phi 0.63 [0.45; 0.76]). PD-L1 protein expression (aHR: 1.90 [1.05; 3.45]), high TcellinfGEP score (aHR: 1.86 [1.04; 3.31]), and SOX2 expression (aHR: 2.09 [1.20; 3.64]) were associated with worse OS. CONCLUSIONS: PD-L1, TcellinfGEP score, and SOX2 are prognostic of outcome from the mCRPC setting. If validated, predictive biomarker studies incorporating survival endpoints need to take these findings into consideration. PATIENT SUMMARY: This study presents an analysis of immune biomarkers in biopsies from patients with metastatic prostate cancer. We describe tumor alterations that predict prognosis that can impact future studies
    corecore