18 research outputs found

    Primary Immunodeficiency Information Knowledge Services

    Get PDF
    Tutkijat pystyvät tuottamaan uusilla menetelmillä suuria tietomääriä (esim. teksti- ja multimedialähteistä), mikä on haaste tutkijayhteisölle. Bioinformatiikan avulla voidaan madaltaa kynnystä tiedon hyödyntämiseen kehittämällä algoritmeja, työkaluja ja menetelmiä lisääntyvien tietomäärien käsittelyyn. Tämä tutkimushankkeen tärkeimpänä antina tuodaan käytettäväksi uusia ja parannettuja biolääketieteellisen informatiikan menetelmiä primaarien immuunipuutosten (PID) alalla. Potilailla, joilla on näitä tauteja, esiintyy tavallista useammin infektioita, mutta myös autoimmuunioireita ja kasvaimia. Monet näistä taudeista ovat erittäin harvinaisia ja kuolemaan johtavia, ja usein ne diagnosoidaan väärin tai myöhässä. Ohjelmistojen kehitys primaaristen immuunipuutosten alalla on erittäin haastava tehtävä. Tässä tutkimuksessa kehitettiin kaksi tietokantaa ja uusi PID:ien luokittelu. Tässä kuvattavissa tutkimuksissa käytetään poikkitieteellistä lähestymistapaa, joka perustuu tietokanta- ja tiedonlouhintamenetelmiin, tekoälyyn, koneoppimiseen ja tietoihin, joita on yhdistetty eri aloilta, kuten molekyylibiologiasta, perinnöllisyystieteestä, immunologiasta ja bioinformatiikasta. PID:ien laajaa alaa tutkittiin proteiinien, perinnöllisyyden ja kliinisen tilan tasolla sekä perustuen eri PID:ien analyyseihin. Kehitimme kaksi tietokantaa, ImmunoDeficiency Resources (IDR) ja IDdiagnostics. IDR on kattava PID:ien tietämyskanta, johon kuuluu työkaluja kliinisiä, biokemiallisia ja laskennallisia analyysejä varten, perinnöllisyyden ja proteiinirakenteiden analyysejä varten, sekä myös linkkejä muiden ylläpitämiin aiheeseen liittyviin tietoihin. IDdiagnostics on luettelo laboratorioista, jotka tekevät PID:ien perinnöllisyystestejä ja kliinisiä testejä. PID:ien bioinformatiikkatutkimuksen käsitekartta suunniteltiin monentyyppisille käyttäjille. Mallia voidaan käyttää erityyppisille perinnöllisille taudeille. Useasta PID:ien luokittelu- ja ryvästysmenetelmästä on kehitetty uusi luokittelu yhteentoista ryhmään, joka tuo esille aiemmin tuntemattomia PID:ien piirteitä ja samankaltaisuuksia. Nämä menetelmät tähtäävät PID:ien luokittelun automatisointiin, mikä olisi erittäin hyödyllistä PID:ien tutkimukselle ja kliiniselle yhteisölle. Luokittelun vertailu toisistaan riippumattomiin piirteisiin, kuten tautien vakavuuteen ja hoitoon, proteiinien toiminnalliseen luokitteluun ja vuorovaikutusverkostojen haavoittuvuteen viittaa vahvaan tilastolliseen tukeen. Menetelmää voidaan soveltaa mihin tahansa tautiryhmään.New technologies allow researchers to produce large amounts of data (e.g. from textual and multimedia sources), which represents a challenge for the scientific community. Bioinformatics fills the gaps by creating algorithms, tools and methods to process the increasing quantity of information. The main contribution of this research project was to introduce new and improved biomedical informatics methods in the field of primary immunodeficiency diseases (PIDs). Patients with these diseases have an increased rate of infections but also autoimmune and malignant manifestations. Many of these diseases are very rare with a fatal end and often they are misdiagnosed or have a delayed diagnosis. Developing software systems within the domain of primary immunodeficiencies is a highly challenging task. In this study two databases were created and a new classification for PIDs was developed. The studies described here use an interdisciplinary approach, based on database and datamining technologies, artificial intelligence, machine learning and combined data from different disciplines such as molecular biology, genetics, immunology, bioinformatics. The wide ranging domain of PIDs was investigated at the protein, genetic, and clinical level and, based on the analyses of different PIDs. Two databases, ImmunoDeficiency Resources (IDR) and IDdiagnostics were developed. IDR is a comprehensive knowledge base for PIDs, which includes tools for clinical, biochemical, genetic, structural and computational analyses as well as links to related information maintained by others. IDdiagnostics is a directory of laboratories performing genetic and clinical tests for PIDs. A concept map for the bioinformatics study of PIDs was designed for different types of users. The model can be used for different types of hereditary diseases. Several computational methods for the classification and clustering of PIDs have been developed a novel classification of 11 groups, which revealed previously unknown features and relationships of PIDs. These methods aim at automating the classification of PIDs and therefore would be very useful for the PID research and clinical community. Comparison of the classification to independent features such as severity and therapy of the diseases, functional classification of proteins, and network vulnerability, indicated a strong statistical support. The method can be applied to any group of diseases

    IDR knowledge base for primary immunodeficiencies

    Get PDF
    Background The ImmunoDeficiency Resource (IDR) is a knowledge base for the integration of the clinical, biochemical, genetic, genomic, proteomic, structural, and computational data of primary immunodeficiencies. The need for the IDR arises from the lack of structured and systematic information about primary immunodeficiencies on the Internet, and from the lack of a common platform which enables doctors, researchers, students, nurses and patients to find out validated information about these diseases. Description The IDR knowledge base, first released in 1999, has grown substantially. It contains information for 158 diseases, both from a clinical as well as molecular point of view. The database and the user interface have been reformatted. This new IDR release has a richer and more complete breadth, depth and scope. The service provides the most complete and up-to-date dataset. The IDR has been integrated with several internal and external databases and services. The contents of the IDR are validated and selected for different types of users (doctors, nurses, researchers and students, as well as patients and their families). The search engine has been improved and allows either a detailed or a broad search from a simple user interface. Conclusion The IDR is the first knowledge base specifically designed to capture in a systematic and validated way both clinical and molecular information for primary immunodeficiencies. The service is freely available at http://bioinf.uta.fi/idr and is regularly updated. The IDR facilitates primary immunodeficiencies informatics and helps to parameterise in silico modelling of these diseases. The IDR is useful also as an advanced education tool for medical students, and physicians.BioMed Central Open acces

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes.

    Get PDF
    Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.JW is supported by a Cancer Research UK Cambridge Cancer Centre Clinical Research Training Fellowship. Funding for the NIHR BioResource – Rare diseases project was provided by the National Institute for Health Research (NIHR, grant number RG65966). ERM acknowledges support from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre), Cancer Research UK Cambridge Cancer Centre and Medical Research Council Infrastructure Award. The University of Cambridge has received salary support in respect of EM from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. DGE is an NIHR Senior Investigator and is supported by the all Manchester NIHR Biomedical Research Centre

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    Autosomal dominant STAT6 Gain of function causes severe atopy associated with lymphoma

    Get PDF
    The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis

    Publisher Correction: Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore