133 research outputs found

    Gait and Balance Changes with Investigational Peripheral Nerve Cell Therapy during Deep Brain Stimulation in People with Parkinson’s Disease

    Get PDF
    Background: The efficacy of deep brain stimulation (DBS) and dopaminergic therapy is known to decrease over time. Hence, a new investigational approach combines implanting autologous injury-activated peripheral nerve grafts (APNG) at the time of bilateral DBS surgery to the globus pallidus interna. Objectives: In a study where APNG was unilaterally implanted into the substantia nigra, we explored the effects on clinical gait and balance assessments over two years in 14 individuals with Parkinson’s disease. Methods: Computerized gait and balance evaluations were performed without medication, and stimulation was in the off state for at least 12 h to best assess the role of APNG implantation alone. We hypothesized that APNG might improve gait and balance deficits associated with PD. Results: While people with a degenerative movement disorder typically worsen with time, none of the gait parameters significantly changed across visits in this 24 month study. The postural stability item in the UPDRS did not worsen from baseline to the 24-month follow-up. However, we measured gait and balance improvements in the two most affected individuals, who had moderate PD. In these two individuals, we observed an increase in gait velocity and step length that persisted over 6 and 24 months. Conclusions: Participants did not show worsening of gait and balance performance in the off therapy state two years after surgery, while the two most severely affected participants showed improved performance. Further studies may better address the long-term maintanenace of these results

    RNA Sequencing of Human Peripheral Nerve in Response to Injury: Distinctive Analysis of the Nerve Repair Pathways

    Get PDF
    The development of regenerative therapies for central nervous system diseases can likely benefit from an understanding of the peripheral nervous system repair process, particularly in identifying potential gene pathways involved in human nerve repair. This study employed RNA sequencing (RNA-seq) technology to analyze the whole transcriptome profile of the human peripheral nerve in response to an injury. The distal sural nerve was exposed, completely transected, and a 1 to 2 cm section of nerve fascicles was collected for RNA-seq from six participants with Parkinson\u27s disease, ranging in age between 53 and 70 yr. Two weeks after the initial injury, another section of the nerve fascicles of the distal and pre-degenerated stump of the nerve was dissected and processed for RNA-seq studies. An initial analysis between the pre-lesion status and the postinjury gene expression revealed 3,641 genes that were significantly differentially expressed. In addition, the results support a clear transdifferentiation process that occurred by the end of the 2-wk postinjury. Gene ontology (GO) and hierarchical clustering were used to identify the major signaling pathways affected by the injury. In contrast to previous nonclinical studies, important changes were observed in molecular pathways related to antiapoptotic signaling, neurotrophic factor processes, cell motility, and immune cell chemotactic signaling. The results of our current study provide new insights regarding the essential interactions of different molecular pathways that drive neuronal repair and axonal regeneration in humans

    Surgeons and suture zones: Hybridization among four surgeonfish species in the Indo-Pacific with variable evolutionary outcomes.

    Get PDF
    Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N = 141) and A. nigricans (N = 412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N = 54) and A. japonicus (N = 49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000–2.25 million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr ≈ 0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST = 0.6533, P < 0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mtDNA lineage and species identification based on external morphology, indicating that species integrity may not be eroding. The A. nigricans complex demonstrates a range of outcomes from incomplete speciation to secondary contact to decreasing hybridization with increasing evolutionary depth

    Response of the Human Circadian System to Millisecond Flashes of Light

    Get PDF
    Ocular light sensitivity is the primary mechanism by which the central circadian clock, located in the suprachiasmatic nucleus (SCN), remains synchronized with the external geophysical day. This process is dependent on both the intensity and timing of the light exposure. Little is known about the impact of the duration of light exposure on the synchronization process in humans. In vitro and behavioral data, however, indicate the circadian clock in rodents can respond to sequences of millisecond light flashes. In a cross-over design, we tested the capacity of humans (n = 7) to respond to a sequence of 60 2-msec pulses of moderately bright light (473 lux) given over an hour during the night. Compared to a control dark exposure, after which there was a 3.5±7.3 min circadian phase delay, the millisecond light flashes delayed the circadian clock by 45±13 min (p<0.01). These light flashes also concomitantly increased subjective and objective alertness while suppressing delta and sigma activity (p<0.05) in the electroencephalogram (EEG). Our data indicate that phase shifting of the human circadian clock and immediate alerting effects can be observed in response to brief flashes of light. These data are consistent with the hypothesis that the circadian system can temporally integrate extraordinarily brief light exposures

    Activity Increase Despite Arthritis (AÏDA): design of a Phase II randomised controlled trial evaluating an active management booklet for hip and knee osteoarthritis [ISRCTN24554946]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hip and knee osteoarthritis is a common cause of pain and disability, which can be improved by exercise interventions. However, regular exercise is uncommon in this group because the low physical activity level in the general population is probably reduced even further by pain related fear of movement. The best method of encouraging increased activity in this patient group is not known. A booklet has been developed for patients with hip or knee osteoarthritis. It focuses on changing disadvantageous beliefs and encouraging increased physical activity.</p> <p>Methods/Design</p> <p>This paper describes the design of a Phase II randomised controlled trial (RCT) to test the effectiveness of this new booklet for patients with hip and knee osteoarthritis in influencing illness and treatment beliefs, and to assess the feasibility of conducting a larger definitive RCT in terms of health status and exercise behaviour. A computerised search of four general medical practice patients' record databases will identify patients older than 50 years of age who have consulted with hip or knee pain in the previous twelve months. A random sample of 120 will be invited to participate in the RCT comparing the new booklet with a control booklet, and we expect 100 to return final questionnaires. This trial will assess the feasibility of recruitment and randomisation, the suitability of the control intervention and outcome measurement tools, and will provide an estimate of effect size. Outcomes will include beliefs about hip and knee pain, beliefs about exercise, fear avoidance, level of physical activity, health status and health service costs. They will be measured at baseline, one month and three months.</p> <p>Discussion</p> <p>We discuss the merits of testing effectiveness in a phase II trial, in terms of intermediate outcome measures, whilst testing the processes for a larger definitive trial. We also discuss the advantages and disadvantages of testing the psychometric properties of the primary outcome measures concurrently with the trial.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN24554946</p

    Diabetes MILES - Australia (Management and Impact for Long-Term Empowerment and Success) : methods and sample characteristics of a national survey of the psychological aspects of living with type 1 or type 2 diabetes in Australian adults

    Get PDF
    Background Successful management of diabetes requires attention to the behavioural, psychological and social aspects of this progressive condition. The Diabetes MILES (Management and Impact for Long-term Empowerment and Success) Study is an international collaborative. Diabetes MILES-Australia, the first Diabetes MILES initiative to be undertaken, was a national survey of adults living with type 1 or type 2 diabetes in Australia. The aim of this study was to gather data that will provide insights into how Australians manage their diabetes, the support they receive and the impact of diabetes on their lives, as well as to use the data to validate new diabetes outcome measures.Methods The survey was designed to include a core set of self-report measures, as well as modules specific to diabetes type or management regimens. Other measures or items were included in only half of the surveys. Cognitive debriefing interviews with 20 participants ensured the survey content was relevant and easily understood. In July 2011, the survey was posted to 15,000 adults (aged 18-70 years) with type 1 or type 2 diabetes selected randomly from the National Diabetes Services Scheme (NDSS) database. An online version of the survey was advertised nationally. A total of 3,338 eligible Australians took part; most (70.4%) completed the postal survey. Respondents of both diabetes types and genders, and of all ages, were adequately represented in both the postal and online survey sub-samples. More people with type 2 diabetes than type 1 diabetes took part in Diabetes MILES-Australia (58.8% versus 41.2%). Most respondents spoke English as their main language, were married/in a de facto relationship, had at least a high school education, were occupied in paid work, had an annual household income &gt; $AUS40,000, and lived in metropolitan areas.Discussion A potential limitation of the study is the under-representation of respondents from culturally and linguistically diverse backgrounds (including Aboriginal and Torres Strait Islander origin). Diabetes MILES-Australia represents a major achievement in the study of diabetes in Australia, where for the first time, the focus is on psychosocial and behavioural aspects of this condition at a national level. <br /

    Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Get PDF
    The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank\u27s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies

    Ghrelin, Sleep Reduction and Evening Preference: Relationships to CLOCK 3111 T/C SNP and Weight Loss

    Get PDF
    Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss.We recruited 1495 overweight/obese subjects (BMI: 25-40 kg/m(2)) of 20-65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12-14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes.Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors

    High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago

    Get PDF
    In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south
    corecore