21 research outputs found

    Diagnostic performance of morphometric vertebral fracture analysis (MXA) in children using a 33-point software program

    Get PDF
    Background There is significant inter and intraobserver variability in diagnosing vertebral fractures in children. Purpose We aimed to evaluate the diagnostic accuracy of morphometric vertebral fracture analysis (MXA) using a 33-point software program designed for adults, on dual-energy x-ray absorptiometry (DXA) images of children. Materials and methods Lateral spine DXA images of 420 children aged between 5 and 18 years were retrospectively reviewed. Vertebral fracture assessment (VFA) by an expert pediatric radiologist using Genant's semiquantitative scoring system served as the gold standard. All 420 DXA scans were analyzed by a trained radiographer, using semi-automated software (33-point morphometry). VFA of a random sample of 100 DXA was performed by an experienced pediatric clinical scientist. MXA of a random sample of 30 DXA images were analyzed by three pediatric radiologists and the pediatric clinical scientist. Diagnostic accuracy and inter and intraobserver agreement (kappa statistics) were calculated. Results Overall sensitivity, specificity, false positive (FP) and false negative (FN) rates for the radiographer using the MXA software were 80%, 90%, 10%, and 20% respectively and for mild fractures alone were 46%, 92%, 8%, and 54% respectively. Overall sensitivity, specificity, FP, and FN rates for the four additional observers using MXA were 89%, 79%, 21%, and 11% respectively and for mild fractures alone were 36%, 86%, 14%, and 64% respectively. Agreement between two expert observers was fair to good for VFA and MXA [kappa = 0·29 to 0·76 (95% CI: 0·17–0·88) and 0·29 to 0·69 (95% CI: 0·17–0·83)] respectively. Conclusion MXA using a 33-point technique developed for adults is not a reliable method for the identification of mild vertebral fractures in children. A pediatric standard is required which not only incorporates specific vertebral body height ratios but also the age-related physiological changes in vertebral shape that occur throughout childhood

    Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unravelling a complex cellular defect.

    Get PDF
    Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting: Natural history study in paediatric research centres. Patients: Eight patients with type XIV OI. Main Outcome Measures: Clinical examinations included: bone mineral density, radiographs, echocardiography and muscle biopsy. Bone biopsy samples (n=3) were analysed using histomorphometry, quantitative backscattered electron microscopy and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results: The clinical phenotype of type XIV OI ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband L1-L4 bone density Z-score was reduced (median -3.3 [range -4.77 to +0.1; n=7]), and increased by +1.7 (1.17 to 3.0; n=3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased late and mineralization-related markers. Predominance of TRIC-B over TRIC-A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions: OI type XIV has a bone histology, matrix mineralization and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities

    The Still Bay points of Apollo 11 Rock Shelter, Namibia : an inter-regional perspective

    Get PDF
    Abstract: Dating to roughly 80,000 to 70,000 years ago, components of the Still Bay technocomplex of southern Africa and their potential behavioural implications have been widely discussed. Stone points with invasive retouch, as defined over 90 years ago by Goodwin and van Riet Lowe, serve as markers for Still Bay assemblages, yet many Still Bay sites remain undated and comprehensive, comparable sets of data for their point assemblages remain unpublished. Much of the Middle Stone Age at the site of Apollo 11 in Namibia was undated until 2010, when a potential Still Bay component was announced. Although a Still Bay assemblage at Apollo 11 would represent the most northwesterly and inland expression of this technocomplex, its points have never been fully analysed. This paper presents their morphometric data and an interpretation of point-production strategies. These results are then compared with data obtained for two South African sites: Hollow Rock Shelter in the Western Cape and Umhlatuzana in KwaZulu-Natal. This comparison demonstrates that whereas there are no statistically significant differences in the morphometric data sets between the three sites, there are both similarities and differences in point-production strategies, cross-section shapes and the use of raw materials for knapping. It is suggested that these similarities and variations represent aspects of how knowledge-transfer systems and knapping conventions were followed on both intra-regional and inter-regional scales

    Body fat estimation using bioelectrical impedance

    No full text
    Background/Aims: Although childhood obesity is a major problem, routine assessment methods do not reflect fat mass. Body mass index, which is most commonly used, gives an indication of weight for height and not a degree of adiposity. Methods: Bioelectrical impedance and dual-energy X-ray absorptiometry (DEXA) were used in a group of obese children to assess body fat. Results: Comparison between DEXA and commercial bioelectrical impedance scales in 46 children showed a highly significant correlation (R = 0.944, p < 0.001) in fat mass. Fat mass measured using bioelectrical impedance was 2.4 kg lower compared to measurement using DEXA. Conclusion: These bioelectrical scales may prove useful in the management of childhood obesity as they are able to provide important clinical information regarding fat mass and adiposity

    From bone biology to bone analysis.

    No full text
    Item does not contain fulltextBone development is one of the key processes characterizing childhood and adolescence. Understanding this process is not only important for physicians treating pediatric bone disorders, but also for clinicians and researchers dealing with postmenopausal and senile osteoporosis. Bone densitometry has great potential to enhance our understanding of bone development. The usefulness of densitometry in children and adolescents would be increased if the physiological mechanisms and structural features of bone were given more consideration in the design and interpretation of densitometric studies. This review gives an overview on the most relevant techniques of quantitative noninvasive bone analysis. Furthermore it describes the relationship between bone biology, selected surrogates describing the biological processes and the possibilities of measuring these surrogates specifically and precisely by the different devices. The overall recommendation for researchers in this field is to describe firstly the biological process to be analyzed (bone growth in length, remodeling or modeling, or all together), secondly the bone parameter which describes this process, and thirdly the reason for selecting a special device

    Developing transdisciplinary approaches to sustainability challenges: the need to model socio-environmental systems in the longue durée

    No full text
    Human beings are an active component of every terrestrial ecosystem on Earth. Although our local impact on the evolution of these ecosystems has been undeniable and extensively documented, it remains unclear precisely how our activities are altering them, in part because ecosystems are dynamic systems structured by complex, non-linear feedback processes and cascading effects. We argue that it is only by studying human–environment interactions over timescales that greatly exceed the lifespan of any individual human (i.e., the deep past or longue durée), we can hope to fully understand such processes and their implications. In this article, we identify some of the key challenges faced in integrating long-term datasets with those of other areas of sustainability science, and suggest some useful ways forward. Specifically, we (a) highlight the potential of the historical sciences for sustainability science, (b) stress the need to integrate theoretical frameworks wherein humans are seen as inherently entangled with the environment, and (c) propose formal computational modelling as the ideal platform to overcome the challenges of transdisciplinary work across large, and multiple, geographical and temporal scales. Our goal is to provide a manifesto for an integrated scientific approach to the study of socio-ecological systems over the long term
    corecore