280 research outputs found
Contextualising the pervasive impact of macroeconomic austerity on prison health in England: A qualitative study among international policymakers
Background: Prisons offer the state the opportunity to gain access to a population that is at particularly high risk of ill-health. Despite the supportive legal and policy structures surrounding prison rehabilitation, the oppressive nature of the austerity policy in England threatens its advanced improvement.Methods: Using grounded theory methodology, this is the first interdisciplinary qualitative study to explore the impact of macroeconomic austerity on prison health in England from the perspective of 29 international prison policymakers.Results: The far-reaching impact of austerity in England has established a regressive political system that shapes the societal attitude towards social issues, which has exacerbated the existing poor health of the prisoners. Austerity has undermined the notion of social collectivism, imposed a culture of acceptance among prison bureaucrats and the wider community, and normalised the devastating impacts of prison instability. These developments are evidenced by the increasing levels of suicide, violence, radicalisation and prison gangs among prisoners, as well as the imposition of long working hours and the high levels of absenteeism among prison staff.Conclusions: This study underscores an important and yet unarticulated phenomenon that despite being the fifth largest economy in the world, England’s poorest, marginalised and excluded population continues to bear the brunt of austerity. Reducing the prison population, using international obligations as minimum standards to protect prisoners’ right to health and providing greater resources would create a more positive and inclusive system, in line with England’s international and domestic commitments to the humane treatment of all people
In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells
Background: Bone grafts are required to repair large bone defects after tumour resection or large tr
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
An Analysis on the Detection of Biological Contaminants Aboard Aircraft
The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS) devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft
Comparing multiple competing interventions in the absence of randomized trials using clinical risk-benefit analysis
<p>Abstract</p> <p>Background</p> <p>To demonstrate the use of risk-benefit analysis for comparing multiple competing interventions in the absence of randomized trials, we applied this approach to the evaluation of five anticoagulants to prevent thrombosis in patients undergoing orthopedic surgery.</p> <p>Methods</p> <p>Using a cost-effectiveness approach from a clinical perspective (i.e. risk benefit analysis) we compared thromboprophylaxis with warfarin, low molecular weight heparin, unfractionated heparin, fondaparinux or ximelagatran in patients undergoing major orthopedic surgery, with sub-analyses according to surgery type. Proportions and variances of events defining risk (major bleeding) and benefit (thrombosis averted) were obtained through a meta-analysis and used to define beta distributions. Monte Carlo simulations were conducted and used to calculate incremental risks, benefits, and risk-benefit ratios. Finally, net clinical benefit was calculated for all replications across a range of risk-benefit acceptability thresholds, with a reference range obtained by estimating the case fatality rate - ratio of thrombosis to bleeding.</p> <p>Results</p> <p>The analysis showed that compared to placebo ximelagatran was superior to other options but final results were influenced by type of surgery, since ximelagatran was superior in total knee replacement but not in total hip replacement.</p> <p>Conclusions</p> <p>Using simulation and economic techniques we demonstrate a method that allows comparing multiple competing interventions in the absence of randomized trials with multiple arms by determining the option with the best risk-benefit profile. It can be helpful in clinical decision making since it incorporates risk, benefit, and personal risk acceptance.</p
African-American crack abusers and drug treatment initiation: barriers and effects of a pretreatment intervention
BACKGROUND: Individual and sociocultural factors may pose significant barriers for drug abusers seeking treatment, particularly for African-American crack cocaine abusers. However, there is evidence that pretreatment interventions may reduce treatment initiation barriers. This study examined the effects of a pretreatment intervention designed to enhance treatment motivation, decrease crack use, and prepare crack abusers for treatment entry. METHODS: Using street outreach, 443 African-American crack users were recruited in North Carolina and randomly assigned to either the pretreatment intervention or control group. RESULTS: At 3-month follow-up, both groups significantly reduced their crack use but the intervention group participants were more likely to have initiated treatment. CONCLUSION: The intervention helped motivate change but structural barriers to treatment remained keeping actual admissions low. Policy makers may be interested in these pretreatment sites as an alternative to treatment for short term outcomes
Spinal Astrocytic Activation Is Involved in a Virally-Induced Rat Model of Neuropathic Pain
Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN
- …