162 research outputs found

    A study of methanol and silicon monoxide production through episodic explosions of grain mantles in the Central Molecular Zone

    Get PDF
    Methanol (CH3_3OH) is found to be abundant and widespread towards the Central Molecular Zone, the inner few hundred parsecs of our Galaxy. Its origin is, however, not fully understood. It was proposed that the high cosmic ray ionisation rate in this region could lead to a more efficient non-thermal desorption of this species formed on grain surfaces, but it would also mean that this species is destroyed in a relatively short timescale. In a first step, we run chemical models with a high cosmic ray ionisation rate and find that this scenario can only reproduce the lowest abundances of methanol derived in this region (∌\sim10−9^{-9}-10−8^{-8}). In a second step, we investigate another scenario based on episodic explosions of grain mantles. We find a good agreement between the predicted abundances of methanol and the observations. We find that the dominant route for the formation of methanol is through hydrogenation of CO on the grains followed by the desorption due to the grain mantle explosion. The cyclic aspect of this model can explain the widespread presence of methanol without requiring any additional mechanism. We also model silicon monoxide (SiO), another species detected in several molecular clouds of the Galactic Centre. An agreement is found with observations for a high depletion of Si (Si/H ∌\sim 10−8^{-8}) with respect to the solar abundance.Comment: Accepted in MNRA

    On the accretion process in a high-mass star forming region - A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    Full text link
    [Abridged] Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J=3←2J = 3\leftarrow2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10−001_0-0_0 ortho-NH3_3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10−001_0-0_0. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km \,s−1^{-1}, relative to the source systemic velocity. The inferred mass accretion rates derived are sufficient to overcome the expected radiation pressure from G34.26+0.15.Comment: 20 pages, 18 figures, accepted by A&A 3 October 201

    The ALMA-PILS survey: First tentative detection of 3-hydroxypropenal (HOCHCHCHO) in the interstellar medium and chemical modeling of the C3_3H4_4O2_2 isomers

    Full text link
    Characterizing the molecular composition of solar-type protostars is useful for improving our understanding of the physico-chemical conditions under which the Sun and its planets formed. In this work, we analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) data of the Protostellar Interferometric Line Survey (PILS), an unbiased spectral survey of the solar-type protostar IRAS~16293--2422, and we tentatively detected 3-hydroxypropenal (HOCHCHCHO) for the first time in the interstellar medium towards source B. Based on the observed line intensities and assuming local thermodynamic equilibrium, its column density is constrained to be ∌\sim1015^{15} cm−2^{-2}, corresponding to an abundance of 10−4^{-4} relative to methanol, CH3_3OH. Additional spectroscopic studies are needed to constrain the excitation temperature of this molecule. We included HOCHCHCHO and five of its isomers in the chemical network presented in Manigand et al. (2021) and we predicted their chemical evolution with the Nautilus code. The model reproduces the abundance of HOCHCHCHO within the uncertainties. This species is mainly formed through the grain surface reaction CH2_2CHO + HCO →\rightarrow HCOCH2_2CHO, followed by the tautomerization of HCOCH2_2CHO into HOCHCHCHO. Two isomers, CH3_3COCHO and CH2_2COHCHO, are predicted to be even more abundant than HOCHCHCHO. Spectroscopic studies of these molecules are essential in searching for them in IRAS~16293--2422 and other astrophysical sources.Comment: Accepted in A&A Letter

    Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B

    Get PDF
    Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, to compare their HDO abundance distribution with other star-forming regions, and to constrain their HDO/H2O ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component and a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11}, respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10}, respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.Comment: 16 pages, 13 figure

    ALMA observations of doubly deuterated water: Inheritance of water from the prestellar environment

    Get PDF
    Establishing the origin of the water D/H ratio in the Solar System is central to our understanding of the chemical trail of water during the star and planet formation process. Recent modeling suggests that comparisons of the D2_2O/HDO and HDO/H2_2O ratios are a powerful way to trace the chemical evolution of water and, in particular, determine whether the D/H ratio is inherited from the molecular cloud or established locally. We seek to determine the D2_2O column density and derive the D2_2O/HDO ratios in the warm region toward the low-mass Class 0 sources B335 and L483. The results are compared with astrochemical models and previous observations to determine their implications for the chemical evolution of water. We present ALMA observations of the D2_2O transition at 316.8 GHz toward B335 and L483 at <<0.5" (<< 100 au) resolution, probing the inner warm envelope gas. The column densities of D2_2O, HDO, and H218_{2}^{18}O are determined by synthetic spectrum modeling and direct Gaussian fitting, under the assumption of a single excitation temperature and similar spatial extent for the three water isotopologs. D2_2O is detected toward both sources in the inner warm envelope. The derived D2_2O/HDO ratios is (1.0±0.2)×10−2(1.0\pm0.2)\times10^{-2} for L483 and (1.4±0.1)×10−2(1.4\pm0.1)\times10^{-2} for B335. The high D2_2O/HDO ratios are a strong indication of chemical inheritance of water from the prestellar phase down to the inner warm envelope. This implies that the local cloud conditions in the prestellar phase, such as temperatures and timescales, determine the water chemistry at later stages and could provide a source of chemical differentiation in young systems. In addition, the observed D2_2O/H2_2O ratios support an observed dichotomy in the deuterium fractionation of water toward isolated and clustered protostars, namely, a higher D/H ratio toward isolated sourcesComment: Accepted for publication in A&A. Revision fixes typo in titl

    The first ALMA view of IRAS 16293-2422: Direct detection of infall onto source B and high-resolution kinematics of source A

    Full text link
    Aims: We focus on the kinematical properties of a proto-binary to study the infall and rotation of gas towards its two protostellar components. Methods: We present ALMA Science Verification observations with high-spectral resolution of IRAS 16293-2422 at 220.2 GHz. The wealth of molecular lines in this source and the very high spectral resolution offered by ALMA allow us to study the gas kinematics with unprecedented detail. Results: We present the first detection of an inverse P-Cygni profile towards source B in the three brightest lines. The line profiles are fitted with a simple two-layer model to derive an infall rate of 4.5x10^-5 Msun/yr. This infall detection would rule-out the previously suggested possibility that source B is a T Tauri star. A position velocity diagram for source A shows evidence for rotation with an axis close to the line-of-sight.Comment: Accepted by A&A Letters. 4 pages, 3 figures, 3 appendices (one for Tables, one for additional figures). This second version includes small language modifications and changes to keep the letter within the 4 page limi

    Nitrogen hydrides in the cold envelope of IRAS16293-2422

    Get PDF
    Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78~THz at high spectral resolution. The hyperfine structure of the amidogen radical o-NH2 is resolved and seen in absorption against the continuum of the protostar. Several transitions of ammonia from 1.2 to 1.8~THz are also seen in absorption. These lines trace the low-density envelope of the protostar. Column densities and abundances are estimated for each hydride. We find that NH:NH2:NH3=5:1:300. {Dark clouds chemical models predict steady-state abundances of NH2 and NH3 in reasonable agreement with the present observations, whilst that of NH is underpredicted by more than one order of magnitude, even using updated kinetic rates. Additional modelling of the nitrogen gas-phase chemistry in dark-cloud conditions is necessary before having recourse to heterogen processes

    The ALMA Protostellar Interferometric Line Survey (PILS): First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA

    Get PDF
    The inner regions of the envelopes surrounding young protostars are characterised by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. This paper introduces a systematic survey, "Protostellar Interferometric Line Survey (PILS)" of the Class 0 protostellar binary IRAS 16293-2422 using the Atacama Large Millimeter/submillimeter Array (ALMA). The survey covers the full frequency range from 329 to 363 GHz (0.8 mm) with additional targeted observations at 3.0 and 1.3 mm. More than 10,000 features are detected toward one component in the protostellar binary. Glycolaldehyde, its isomers, methyl formate and acetic acid, and its reduced alcohol, ethylene glycol, are clearly detected. For ethylene glycol both lowest state conformers, aGg' and gGg', are detected, the latter for the first time in the ISM. The abundance of glycolaldehyde is comparable to or slightly larger than that of ethylene glycol. In comparison to the Galactic Center, these two species are over-abundant relative to methanol, possibly an indication of formation at low temperatures in CO-rich ices. Both 13C and deuterated isotopologues of glycolaldehyde are detected, also for the first time ever in the ISM. For the deuterated species, a D/H ratio of approximately 5% is found with no differences between the deuteration in the different functional groups of glycolaldehyde. Measurements of the 13C-species lead to a 12C:13C ratio of approximately 30, lower than the typical ISM value. This low ratio may reflect an enhancement of 13CO in the ice due to either ion-molecule reactions in the gas before freeze-out or differences in the temperatures where 12CO and 13CO ices sublimate. The results reinforce the importance of low-temperature grain surface chemistry for the formation of prebiotic molecules seen here in the gas after sublimation of the entire ice mantle

    First detection of ND in the solar-mass protostar IRAS16293-2422

    Get PDF
    In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Very high molecular D/H ratios have been found for saturated molecules and ions. However, little is known about the deuterium fractionation in radicals, even though simple radicals often represent an intermediate stage in the formation of more complex, saturated molecules. The imidogen radical NH is such an intermediate species for the ammonia synthesis in the gas phase. Herschel/HIFI represents a unique opportunity to study the deuteration and formation mechanisms of such species, which are not observable from the ground. We searched here for the deuterated radical ND in order to determine the deuterium fractionation of imidogen and constrain the deuteration mechanism of this species. We observed the solar-mass Class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI as part of the Herschel key programme CHESS (Chemical HErschel Surveys of Star forming regions). The deuterated form of the imidogen radical ND was detected and securely identified with 2 hyperfine component groups of its fundamental transition in absorption against the continuum background emitted from the nascent protostar. The 3 groups of hyperfine components of its hydrogenated counterpart NH were also detected in absorption. We derive a very high deuterium fractionation with an [ND]/[NH] ratio of between 30 and 100%. The deuterium fractionation of imidogen is of the same order of magnitude as that in other molecules, which suggests that an efficient deuterium fractionation mechanism is at play. We discuss two possible formation pathways for ND, by means of either the reaction of N+ with HD, or deuteron/proton exchange with NH.Comment: Accepted; To appear in A&A Herschel/HIFI Special Issu

    Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4

    Full text link
    We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6−-0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6−-0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms−1^{-1} we estimate total column densities of NN(OH+) >2.5×1014> 2.5 \times 10^{14} cm−2^{-2}, NN(H2O+) ∌6×1013\sim 6 \times 10^{13} cm−2^{-2} and NN(H3O+) ∌4.0×1013\sim 4.0 \times 10^{13} cm−2^{-2}. These detections confirm the role of O+^+ and OH+^+ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form
    • 

    corecore