119 research outputs found
Desynchronizing effect of high-frequency stimulation in a generic cortical network model
Transcranial Electrical Stimulation (TCES) and Deep Brain Stimulation (DBS)
are two different applications of electrical current to the brain used in
different areas of medicine. Both have a similar frequency dependence of their
efficiency, with the most pronounced effects around 100Hz. We apply
superthreshold electrical stimulation, specifically depolarizing DC current,
interrupted at different frequencies, to a simple model of a population of
cortical neurons which uses phenomenological descriptions of neurons by
Izhikevich and synaptic connections on a similar level of sophistication. With
this model, we are able to reproduce the optimal desynchronization around
100Hz, as well as to predict the full frequency dependence of the efficiency of
desynchronization, and thereby to give a possible explanation for the action
mechanism of TCES.Comment: 9 pages, figs included. Accepted for publication in Cognitive
Neurodynamic
Disentangling molecular and clinical stratification patterns in beta-galactosidase deficiency
INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of β-galactosidase (β-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management
Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations
Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR) (MIM No.152950) is a rare autosomal dominant condition for which a causative gene has recently been identified. Mutations in the kinesin family member 11 (KIF11) gene have now been described in 16 families worldwide. This is a review of the condition based on the clinical features of 37 individuals from 22 families. This report includes nine previously unreported families and additional information for some of those reported previously. The condition arose de novo in 8/20 families (40%). The parental results were not available for two probands. The mutations were varied and include missense, nonsense, frameshift, and splice site and are distributed evenly throughout the KIF11 gene. In our cohort, 86% had microcephaly, 78% had an ocular abnormality consistent with the diagnosis, 46% had lymphoedema, 73% had mild-moderate learning difficulties, 8% had epilepsy, and 8% had a cardiac anomaly. We identified three individuals with KIF11 mutations but no clinical features of MCLMR demonstrating reduced penetrance. The variable expression of the phenotype and the presence of mildly affected individuals indicates that the prevalence may be higher than expected, and we would therefore recommend a low threshold for genetic testing
Development, behaviour and sensory processing in Marshall-Smith syndrome and Malan syndrome:phenotype comparison in two related syndromes
Background Ultrarare Marshall-Smith and Malan syndromes, caused by changes of the gene nuclear factor I X (NFIX), are characterised by intellectual disability (ID) and behavioural problems, although questions remain. Here, development and behaviour are studied and compared in a cross-sectional study, and results are presented with genetic findings. Methods Behavioural phenotypes are compared of eight individuals with Marshall-Smith syndrome (three male individuals) and seven with Malan syndrome (four male individuals). Long-term follow-up assessment of cognition and adaptive behaviour was possible in three individuals with Marshall-Smith syndrome. Results Marshall-Smith syndrome individuals have more severe ID, less adaptive behaviour, more impaired speech and less reciprocal interaction compared with individuals with Malan syndrome. Sensory processing difficulties occur in both syndromes. Follow-up measurement of cognition and adaptive behaviour in Marshall-Smith syndrome shows different individual learning curves over time. Conclusions Results show significant between and within syndrome variability. DifferentNFIXvariants underlie distinct clinical phenotypes leading to separate entities. Cognitive, adaptive and sensory impairments are common in both syndromes and increase the risk of challenging behaviour. This study highlights the value of considering behaviour within developmental and environmental context. To improve quality of life, adaptations to environment and treatment are suggested to create a better person-environment fit
Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.</p
Loss-of-Function Variants in HOPS Complex Genes VPS16 and VPS41 Cause Early Onset Dystonia Associated with Lysosomal Abnormalities.
OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877
Національно-демократичні об'єднання та політичні партії в Україні кінця XIX - початку XX століття
Deep brain stimulation (DBS) has become increasingly important for the treatment and relief of neurological disorders such as Parkinson's disease, tremor, dystonia and psychiatric illness. As DBS implantations and any other stereotactic and functional surgical procedure require accurate, precise and safe targeting of the brain structure, the technical aids for preoperative planning, intervention and postoperative follow-up have become increasingly important. The aim of this paper was to give and overview, from a biomedical engineering perspective, of a typical implantation procedure and current supporting techniques. Furthermore, emerging technical aids not yet clinically established are presented. This includes the state-of-the-art of neuroimaging and navigation, patient-specific simulation of DBS electric field, optical methods for intracerebral guidance, movement pattern analysis, intraoperative data visualisation and trends related to new stimulation devices. As DBS surgery already today is an important technology intensive domain, an "intuitive visualisation" interface for improving management of these data in relation to surgery is suggested
Safety and efficacy of low-dose sirolimus in the PIK3CA-Related Overgrowth Spectrum
Purpose
PIK3CA-related overgrowth spectrum (PROS) encompasses a range of debilitating conditions defined by asymmetric overgrowth caused by mosaic activating PIK3CA variants. PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), a critical transducer of growth factor signaling. As mTOR mediates the growth-promoting actions of PI3K, we hypothesized that the mTOR inhibitor sirolimus would slow pathological overgrowth.
Methods
Thirty-nine participants with PROS and progressive overgrowth were enrolled into open-label studies across three centers, and results were pooled. For the primary outcome, tissue volumes at affected and unaffected sites were measured by dual energy X-ray absorptiometry during 26 weeks of untreated run-in and 26 weeks of sirolimus therapy.
Results
Thirty participants completed the study. Sirolimus led to a change in mean percentage total tissue volume of –7.2% (SD 16.0, p = 0.04) at affected sites, but not at unaffected sites (+1.7%, SD 11.5, p = 0.48) (n = 23 evaluable). Twenty-eight of 39 (72%) participants had ≥1 adverse event related to sirolimus of which 37% were grade 3 or 4 in severity and 7/39 (18%) participants were withdrawn consequently.
Conclusion
This study suggests that low-dose sirolimus can modestly reduce overgrowth, but cautions that the side-effect profile is significant, mandating individualized risk–benefit evaluations for sirolimus treatment in PROS
Further delineation of Malan syndrome
Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall–Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only
DLG4-related synaptopathy: a new rare brain disorder
PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen
- …