205 research outputs found

    A comparison of transient elastography with acoustic radiation force impulse elastography for the assessment of liver health in patients with chronic hepatitis C: Baseline results from the TRACER study

    Get PDF
    BACKGROUND: Liver stiffness measurements can be used to assess liver fibrosis and can be acquired by transient elastography using FibroScan® and with Acoustic Radiation Force Impulse imaging. The study aimed to establish liver stiffness measurement scores using FibroScan® and Acoustic Radiation Force Impulse in a chronic hepatitis C cohort and to explore the correlation and agreement between the scores and the factors influencing agreement. METHODS: Patients had liver stiffness measurements acquired with FibroScan® (right lobe of liver) and Acoustic Radiation Force Impulse (right and left lobe of liver). We used Spearman’s correlation to explore the relationship between FibroScan® and Acoustic Radiation Force Impulse scores. A Bland–Altman plot was used to evaluate bias between the mean percentage differences of FibroScan® and Acoustic Radiation Force Impulse scores. Univariable and multivariable analyses were used to assess how factors such as body mass index, age and gender influenced the agreement between liver stiffness measurements. RESULTS: Bland-Altman showed the average (95% CI) percentage difference between FibroScan® and Acoustic Radiation Force Impulse scores was 27.5% (17.8, 37.2), p < 0.001. There was a negative correlation between the average and percentage difference of the FibroScan® and Acoustic Radiation Force Impulse scores (r (95% CI) = −0.41 (−0.57, −0.21), p < 0.001), thus showing that percentage difference gets smaller for greater FibroScan® and Acoustic Radiation Force Impulse scores. Body mass index was the biggest influencing factor on differences between FibroScan® and Acoustic Radiation Force Impulse (r = 0.12 (0.01, 0.23), p = 0.05). Acoustic Radiation Force Impulse scores at segment 5/8 and the left lobe showed good correlation (r (95% CI) = 0.83 (0.75, 0.89), p < 0.001). CONCLUSION: FibroScan® and Acoustic Radiation Force Impulse had similar predictive values for the assessment of liver stiffness in patients with chronic hepatitis C infection; however, the level of agreement varied across lower and higher scores

    Predictors of longitudinal change in bone mineral density in a cohort of HIV-positive and negative subjects.

    Get PDF
    OBJECTIVE: Although low bone mineral density (BMD) is prevalent in HIV, changes in BMD over time remain unclear. We aimed to compare rates of, and factors associated with, BMD change between HIV-positive and HIV-negative subjects. METHODS: In a prospective, 3-year cohort, HIV-positive and HIV-negative subjects provided annual demographic and clinical data, fasting bloods and dual x-ray absorptiometry (DXA). Using longitudinal mixed models we compared and determined predictors of rate of change in BMD. RESULTS: Of 384 subjects (45.8% HIV-positive), 120 contributed two and 264 contributed three BMD measurements. Those with HIV were younger (median (IQR) 39 (34-46) vs 43 (35-50) years; p=0.04), more often male (61% vs 46%; p = 0.003) and less likely Caucasian (61% vs 82%; p 30 years, Caucasian ethnicity, and not being on ART during follow-up were associated with greater decline and higher parathyroid hormone associated with a smaller decline in BMD at the femoral neck. We found no association between BMD change and exposure to tenofovir disoproxil fumarate or protease inhibitors. CONCLUSIONS: We observed no difference in rate of BMD decline regardless of HIV status and in HIV positive subject, having started ART within the previous three months was the only factor associated with greater BMD decline at all 3 sites

    Assessment of trabecular bone score, an index of bone microarchitecture, in HIV positive and HIV negative persons within the HIV UPBEAT cohort

    Get PDF
    Introduction Increased prevalence of low bone mineral density (BMD) and increased fracture incidence are observed in persons living with HIV (PLWH). The trabecular bone score (TBS) is a novel index of bone microarchitecture which improves fracture prediction independent of BMD. Methods The HIV UPBEAT study is a single centre, prospective cohort study that enrolled subjects with and without HIV from similar sociodemographic backgrounds for annual assessments of bone health. TBS was derived from lumbar spine (LS) dual-energy X-ray absorptiometry images. Univariate and multivariable linear regression was used to assess relationships between baseline TBS, BMD, sociodemographic and clinical factors. Results 463 subjects (201 HIV positive) were included; PLWH were younger and more likely male, of non-African ethnicity and current smokers. HIV was associated with a mean reduction of 0.037 [-0.060, -0.013] (p = 0.002) in TBS. Lower TBS was also associated with male gender, non-African ethnicity, current smoking status and lower LS BMD. HIV remained associated with lower TBS after adjustment for LS BMD, age, gender and ethnicity. However, adjustment for current smoking significantly attenuated the association between HIV and TBS, with further adjustment for higher bone turnover markers largely explaining any residual association. Among the sub-group of PLWH, exposure to protease inhibitors and lower nadir CD4+ T-cell counts were both predictors of lower TBS. Conclusions PLWH have lower TBS independent of LS BMD. However, this is largely explained by higher current smoking rates and higher bone turnover in those with HIV. Exposure to PI, but not tenofovir disproxil fumarate, also contributed to lower TBS in those with HIV

    Differential Control of Yersinia pestis Biofilm Formation In Vitro and in the Flea Vector by Two c-di-GMP Diguanylate Cyclases

    Get PDF
    Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Cyclic di-GMP is Essential for the Survival of the Lyme Disease Spirochete in Ticks

    Get PDF
    Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host

    Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio

    Get PDF
    Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglABd GTP-binding are conserved. Deletion of mglABd abolished prey-invasion, but not gliding, and reduced T4P formation. MglABd interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomRBd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the “lone-hunter” Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio

    Protein Domain of Unknown Function 3233 is a Translocation Domain of Autotransporter Secretory Mechanism in Gamma proteobacteria

    Get PDF
    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3rd of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system
    corecore