52 research outputs found

    Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology: Regional Studies 4B (2015): 108-122, doi:10.1016/j.ejrh.2015.05.010.This study assessed the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations was improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.This study was supported by the US National Science Foundation (DEB-0949996, DEB-0743703), the Gordon and Betty Moore Foundation, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, process 135648/2011-4)

    Response of South American Terrestrial Ecosystems to Future Patterns of Sea Surface Temperature

    Get PDF
    Global warming in the first half of the 21st century is likely to have profound influences on South American vegetation and climate. Although coupled atmosphere-biosphere models have been widely used to forecast future vegetation patterns under various scenarios of global warming, they have not been used to assess the potentially critical role of variations in sea surface temperature (SST) in modifying the climate-vegetation interactions. Here, we use monthly output of a 100-year coupled model run to investigate the relationship between SST, precipitation, and productivity of vegetation. Specifically, we assess statistical correlations between SST variability and vegetation in six different South America regions: Northern South America, Western Amazonia, Eastern Amazonia, Northeast Brazil, Central Brazil, and Patagonia. Our model robustly simulates changes in mean precipitation, net primary production (NPP), upper canopy leaf area index (LAI), and lower canopy LAI under warming and nonwarming scenarios. Most significantly, we demonstrate that spatial-temporal variability in SST exerts a strong influence over the vegetation dynamics in all six South American regions

    Pathways for recent Cerrado soybean expansion : extending the soy moratorium and implementing integrated crop livestock systems with soybeans.

    Get PDF
    The Brazilian Soy Moratorium has effectively reduced forest conversion for soybeans in Amazonia. This has come at the expense of the region?s pasturelands, which have increasingly ceded space for compliant soy expansion. The question of extending the policy to the Cerrado, where recent soy expansion has come at the cost of ecologically valuable vegetation, plugs into a wider discussion on how to reconcile competing commodities on finite amounts of cleared area. Innovative management strategies that allow different land uses to coexist are urgently needed. Integrated crop-livestock systems with soybeans(ICLS)rotates beef and soy on the same area, and shows promise as a means to improve production, farmer benefit, and environmental impacts. Here we reconstruct historical land use maps to estimate Cerrado Soy Moratorium outcomes with benchmark years in 2008 and 2014, we then estimate additional production afforded by ICLS implementation between 2008 and 2014. We find that if a 2008 Cerrado Soy Moratorium were in place, 0.7 Mha of 2014 Cerrado soy area would currently be in violation of the policy. Roughly 96% of this acreage is found in Matopiba (82%) and Mato Grosso (14%)states, suggesting that adoption may have slowed recent production in these rapidly transforming soy centers, in contrast to central and southwestern Cerrado where there is more concentrated eligible expansion area. Changing the benchmark to 2014 could have added 0.7 Mha of eligible expansion area, though over 80% of these additions would be in states with the most 2008 eligible area (Distrito Federal, Mato Grosso, Maranh?o, Minas Gerais, Mato Grosso do Sul). Meanwhile, ICLS adoption could have added between 4.0 and 32 Mha of new soy land to the study area without additional clearing between 2008 and 2014, though this would depend on rigorous accompanying land zoning policy to guide implementation. The roughly 5 Mha of Cerrado soybean expansion that actually occurred between 2008 and 2014 could have been accommodated on 2008 suitable pasture area given an ICLS rotation frequency of every 6 years or less. Conservation estimates presented here represent the upper limit of what is possible, as our scenario modeling does not account for variables such as leakage, laundering, or rebound effects

    Amazon hydrology from space : scientific advances and future challenges

    Get PDF
    As the largest river basin on Earth, the Amazon is of major importance to the world's climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda toward integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure

    Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP)

    Get PDF
    A fundamental question connecting terrestrial ecology and global climate change is the sensitivity of key terrestrial biomes to climatic variability and change. The Amazon region is such a key biome: it contains unparalleled biological diversity, a globally significant store of organic carbon, and it is a potent engine driving global cycles of water and energy. The importance of understanding how land surface dynamics of the Amazon region respond to climatic variability and change is widely appreciated, but despite significant recent advances, large gaps in our understanding remain. Understanding of energy and carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Land surface/ecosystem models have become important tools for extrapolating local observations and understanding to much larger terrestrial regions. They are also valuable tools to test hypothesis on ecosystem functioning. Funded by NASA under the auspices of the LBA (the Large-Scale Biosphere–Atmosphere Experiment in Amazonia), the LBA Data Model Intercomparison Project (LBA-DMIP) uses a comprehensive data set from an observational network of flux towers across the Amazon, and an ecosystem modeling community engaged in ongoing studies using a suite of different land surface and terrestrial ecosystem models to understand Amazon forest function. Here an overview of this project is presented accompanied by a description of the measurement sites, data, models and protocol

    Modelo de otimização dos recursos hídricos para irrigação, conforme a época de plantio

    Get PDF
    Propôs-se desenvolver, neste trabalho, um modelo para o consumo de água para fins de irrigação com o objetivo de prever, por meio de simulação, o impacto que teriam diferentes épocas de plantio adotadas pelos irrigantes de toda uma bacia hidrográfica na vazão dos cursos d'água dessa bacia, na época mais seca do ano. O modelo desenvolvido resultados obtidos em função da capacidade do computador disponível e do tempo de processamento do modelo. O modelo mostrou-se sensível aos parâmetros de entrada testados, porém sua validação não pôde ser feita nesta parte do trabalho, em razão da complexidade da bacia hidrográfica simulada.Coordenação de Aperfeiçoamento de Pessoal de Nível Superio
    corecore