10 research outputs found

    Up-conversion emission in transition metal and lanthanide co-doped systems: dimer sensitization revisited

    No full text
    Lanthanide (Ln) co-doped transition metal (TM) upconversion (UC) co-doped systems are being intensively investigated for their exciting applications in photonics, bioimaging, and luminescence thermometry. The presence of TM, such as Mo6 + /W6 +, Mn2 +, or Fe3 + determines significant changes in Ln UC emission, such as intensity enhancement, colour modulation, and even the alteration of the photon order. The current mechanism assumes a ground-state absorption/excited-state absorption (ESA/GSA) in TM-Yb dimer followed by direct energy transfer to Er/Tm excited states. We revisit this mechanism by addressing two issues that remain ignored: a dynamical approach to the investigation of the upconversion mechanism and the intrinsic chemical complexity of co-doped TM, Ln systems. To this aim, we employ a pulsed, excitation variable laser across a complete set of UC measurements, such as the emission and excitation spectra and emission decays and analyze multiple grains with transmission electron microscopy (TEM). In the Mo co-doped garnet, the results sustain the co-existence of Mo-free garnet and Mo oxide impurity. In this Mo oxide, the Er upconversion emission properties are fully explained by a relatively efficient sequential Yb to Er upconversion process, with no contribution from Yb-Mo dimer sensitization.ISSN:2045-232

    Impact of Iridium Oxide Electrodes on the Ferroelectric Phase of Thin Hf 0.5

    No full text
    Thin film metal–ferroelectric–metal capacitors with an equal mixture of hafnium oxide and zirconium oxide as the ferroelectric material are fabricated using iridium oxide as the electrode material. The influence of the oxygen concentration in the electrodes during crystallization anneal on the ferroelectric properties is characterized by electrical, chemical, and structural methods. Forming gas, O2, and N2 annealing atmospheres significantly change the ferroelectric performance. The use of oxygen‐deficient electrodes improves the stabilization of the ferroelectric orthorhombic phase and reduces the wake‐up effect. It is found that oxygen‐rich electrodes supply oxygen during anneal and reduce the amount of oxygen vacancies, but the nonferroelectric monoclinic phase is stabilized with a negative impact on the ferroelectric properties.publishe

    Impact of Iridium Oxide Electrodes on the Ferroelectric Phase of Thin Hf 0.5 Zr 0.5 O 2 Films

    No full text
    Thin film metal–ferroelectric–metal capacitors with an equal mixture of hafnium oxide and zirconium oxide as the ferroelectric material are fabricated using iridium oxide as the electrode material. The influence of the oxygen concentration in the electrodes during crystallization anneal on the ferroelectric properties is characterized by electrical, chemical, and structural methods. Forming gas, O2, and N2 annealing atmospheres significantly change the ferroelectric performance. The use of oxygen‐deficient electrodes improves the stabilization of the ferroelectric orthorhombic phase and reduces the wake‐up effect. It is found that oxygen‐rich electrodes supply oxygen during anneal and reduce the amount of oxygen vacancies, but the nonferroelectric monoclinic phase is stabilized with a negative impact on the ferroelectric properties.publishe

    Accidental Impurities in Epitaxial Pb(Zr0.2Ti0.8)O3 Thin Films Grown by Pulsed Laser Deposition and Their Impact on the Macroscopic Electric Properties

    No full text
    Structural and electrical properties of epitaxial Pb(Zr0.2Ti0.8)O3 films grown by pulsed laser deposition from targets with different purities are investigated in this study. One target was produced in-house by using high purity precursor oxides (at least 99.99%), and the other target was a commercial product (99.9% purity). It was found that the out-of-plane lattice constant is about 0.15% larger and the a domains amount is lower for the film grown from the commercial target. The polarization value is slightly lower, the dielectric constant is larger, and the height of the potential barrier at the electrode interfaces is larger for the film deposited from the pure target. The differences are attributed to the accidental impurities, with a larger amount in the commercial target as revealed by composition analysis using inductive coupling plasma-mass spectrometry. The heterovalent impurities can act as donors or acceptors, modifying the electronic characteristics. Thus, mastering impurities is a prerequisite for obtaining reliable and reproducible properties and advancing towards all ferroelectric devices

    Effect of strain and stoichiometry on the ferroelectric and pyroelectric properties of the epitaxial Pb(Zr0.2Ti0.8)O-3 films deposited on Si wafers

    No full text
    International audienceProperties of epitaxial PbZr0.2Ti0.8O3 (PZT) films deposited on Si substrates were investigated for integration in the present CMOS technology. Polarization is downward oriented, in association with the presence of an internal electric field, and has a lower value compared to the PZT films deposited on single crystal perovskite SrTiO3 (STO) substrates (40 mu C/cm(2) versus 80 mu C/cm(2)), while the dielectric constant is larger (180 versus 120). Large value for the pyroelectric coefficient was also found, 1.22 x 10(-3)C/m(2)K, as for PZT grown on single crystal STO. The macroscopic ferroelectric and pyroelectric properties appear to be affected by the structural quality and stoichiometry of the PZT film. The changes in the electric properties are an effect of the strain gradients induced by the large difference between the thermal expansion coefficients of PZT and Si substrate, leading in turn to Pb oxidation and antisite defect formation compared to PZT films deposited on STO substrates

    Improving the Efficiency of Gallium Telluride for Photocatalysis, Electrocatalysis, and Chemical Sensing through Defects Engineering and Interfacing with its Native Oxide

    No full text
    Gallium telluride (GaTe) is a van der Waals semiconductor, currently adopted for photonic and optoelectronic devices. However, the rapid degradation of GaTe in air, promoted by Te vacancies, is detrimental for device applications. Here, it is demonstrate that the surface oxidation of GaTe can be unexpectedly exploited for expanding the breadth of applications of GaTe. Specifically, the formation of a nanoscale sub-stoichiometric wide-band-gap Ga2O3 skin, promoted by Te vacancies, over narrow-band-gap GaTex upon air exposure is beneficial for electrocatalysis, photocatalysis, and gas sensing . In particular, the Heyrovsky step (H-ads + H+ + e(-) -> H-2) of hydrogen evolution reaction in an acidic medium is barrier-free for the sub-stoichiometric gallium-oxide/gallium-telluride heterostructure, which also enables a significant reduction of costs with respect to state-of-the-art Pt/C electrodes. In the photocatalytic process, the photo-generated electrons migrate from GaTe to Ga2Ox skin, which acts as the chemically active side of the interface. Moreover, the Ga2O3/GaTe heterostructure is a suitable platform for sensing of H2O, NH3, and NO2 at operational temperatures extended up to 600 degrees C (useful for gas detection in combustion processes), mainly due to the increased area of charge redistribution after adsorption achieved upon oxidation of GaTe
    corecore