27 research outputs found

    Observation of a correlated free four-neutron system

    Get PDF
    A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades1, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far2–4, leaving the tetraneutron an elusive nuclear system for six decades. Here we report on the observation of a resonance-like structure near threshold in the four-neutron system that is consistent with a quasi-bound tetraneutron state existing for a very short time. The measured energy and width of this state provide a key benchmark for our understanding of the nuclear force. The use of an experimental approach based on a knockout reaction at large momentum transfer with a radioactive high-energy 8 He beam was key.S

    Improved stability of a compact vacuum-free laser-plasma X-ray source

    Get PDF
    We report the development of a stable high-average power X-ray source generated by the interaction of ultrashort laser pulses (35 fs, 1 mJ, 1 kHz) with a solid target in air. The achieved source stability, which is essential for the applications foreseen for these laser-driven plasma accelerators, is due to the combination of precise positioning of the target on focus and the development of a fast rotating target system able to ensure the refreshment of the material at every shot while minimizing positioning errors with respect to the focal spot. This vacuum-free laser-plasma X-ray source provides an average dose rate of 1.5 Sv/h at 30 cm and a repeatability better than 93% during more than 36 min of continuous operation per targetThis work was supported by the Spanish Ministerio de Ciencia, InnovaciĂłn y Universidades under RTI2018-101578-B-C21 and FPI predoctoral BES-2017-08917 grants, Unidad de Excelencia Maria de Maeztu under project MdM-2016-0692-17-2 and the Xunta de Galicia research grant GRC ED431C 2017/54. C.R. acknowledges the MINECO project FIS2016-75652-PS

    Neutron skin and signature of the N = 14 shell gap found from measured proton radii of 17−22N

    Get PDF
    A thick neutron skin emerges from the first determination of root mean square radii of the proton distributions for 17−22N from charge changing cross section measurements around 900A MeV at GSI. Neutron halo effects are signalled for 22N from an increase in the proton and matter radii. The radii suggest an unconventional shell gap at N = 14 arising from the attractive proton–neutron tensor interaction, in good agreement with shell model calculations. Ab initio, in-medium similarity re-normalization group, calculations with a state-of-the-art chiral nucleon–nucleon and three-nucleon interaction reproduce well the data approaching the neutron drip-line isotopes but are challenged in explaining the complete isotopic trend of the radii.The authors are thankful for the support of the GSI accelerator staff and the FRS technical staff for an efficient running of the experiment. The support from NSERC, Canada for this work is gratefully acknowledged. The support of the PR China government and Beihang University under the Thousand Talent program is gratefully acknowledged. The experiment work is partly supported by the grant-in-aid program of the Japanese government under the contract number 23224008. This work is partly supported by Grants-in-Aid for Scientific Research (JP15K05090) of the JSPS of Japan. It is supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), DE-SC0008499 (NUCLEI SciDAC collaboration), NERRSC Grant No. 491045-2011, and the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory. Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. TRIUMF receives funding via a contribution through the National Research Council Canada. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725, and used computational resources of the National Center for Computational Sciences and the National Institute for Computational Sciences. The authors thank B. Davids for a careful reading of the manuscript.S

    Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Get PDF
    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B=LAND setup with incident beam energies in the range of 300–450 MeV=u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy onenucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type AOðp; 2pÞA−1 N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetryThis work was supported by the German Federal Ministry for Education and Research (BMBF project 05P15RDFN1), and through the GSI-TU Darmstadt cooperation agreement. The work of C. B., W. C., and G. W. was supported by the United Kingdom Science and Technology Facilities Council (STFC) under Grants No. ST/L005743/1 and No. ST/P005314/1. SCGF calculations were performed at the DiRAC Complexity system of the University of Leicester (BIS National E-1023 infrastructure capital Grant No. ST/K000373/1 and STFC 1024 Grant No. ST/K0003259/1). C. A. B. acknowledges support by the U.S. DOE Grant No. DE-FG02- 08ER41533 and the U.S. NSF Grant No. 1415656. L. M. F. acknowledges funding from MINECO FPA2015-65035-P project.S

    Isotopic cross sections of fragmentation residues produced by light projectiles on carbon near 400A MeV

    Get PDF
    We measured 135 cross sections of residual nuclei produced in fragmentation reactions of 12C, 14N, and 13−16,20,22 O projectiles impinging on a carbon target at kinetic energies of near 400 A MeV, most of them for the first time, with the R3B/LAND setup at the GSI facility in Darmstadt (Germany). The use of this state-of-the-art experimental setup in combination with the inverse kinematics technique gave the full identification in atomic and mass numbers of fragmentation residues with a high precision. The cross sections of these residues were determined with uncertainties below 20% for most of the cases. These data are compared to other previous measurements with stable isotopes and are also used to benchmark different model calculations.This work has been partially supported by the Spanish Ministry for Science and Innovation under Grants No. PGC2018-099746-B-C21, No. PGC2018-099746-B-C22, and No. PID2019-104390GB-100; Xunta de Galicia under program “Grupos de referencia competitiva” (Project No. ED431C 2017/54); the German Bundesministerium fĂŒr Bildung und Forschung (BMBF) (Grants No. 05P12RDFN8, No. 05P15RDFN1, and No. 05P19RDFN); the Swedish Research Council; and U.S. Department of Energy Grant No. DE-FG02-08ER41533. J.J.R.S. acknowledges the support of Xunta de Galicia under Grant No. ED481B-2017/002.S

    Quasi-free neutron and proton knockout reactions from light nuclei in a wide neutron-to-proton asymmetry range

    Get PDF
    The quasi-free scattering reactions 11C and 10,11,12C have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and proton-neutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C() and 12C( ) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of single-particle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for are found to be 'significantly smaller than for reactions for all investigated nuclei.This work was supported by the German Federal Ministry of Education and Research (BMBF projects 05P2015RDFN1 and 05P15WOFNA), through the GSI-TU Darmstadt cooperation agreement, by the State of Hesse through the LOEWE center HIC for FAIR, and the Helmholtz-Gemeinschaft through the graduate school HGS-HIRe. This work was supported by the European Union by means of the European Commission within its Seventh Framework Program (FP7) via ENSAR (Contract No. 262010), and the Spanish CICYT research grants FPA2012-32443, FPA2015-64969-07387, and FPA2015-69640-C2-1-P. This work has supported by the Swedish Research Council under contract number 621-2011-5324. C.A.B. acknowledges support from the U.S. NSF grant No. 1415656 and the U.S. DOE grant No. DE-FG02-08ER41533. Supported by the Portuguese FCT under the project PTDC/FIS/103902/2008.S

    Effects of asymmetric dimethylarginine on renal arteries in portal hypertension and cirrhosis

    Get PDF
    AIM. To evaluate the effects of asymmetric dimethylarginine (ADMA) in renal arteries from portal hypertensive and cirrhotic rats. METHODS. Rat renal arteries from Sham (n = 15), pre-hepatic portal hypertension (PPVL; n = 15) and bile duct ligation and excision-induced cirrhosis (BDL; n = 15) were precontracted with norepinephrine, and additional contractions were induced with ADMA (10-6-10-3 mol/L), an endogenous inhibitor of nitric oxide (NO) synthase. Concentration-response curves to acetylcholine (1 × 10-9-3 × 10-6 mol/L) were determined in precontracted renal artery segments with norepinephrine in the absence and in the presence of ADMA. Kidneys were collected to determine the protein expression and activity of dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that catabolizes ADMA. RESULTS. In renal arteries precontracted with norepinephrine, ADMA caused endothelium-dependent contractions. The pD2 values to ADMA were similar in the Sham and PPVL groups (4.20 ± 0.08 and 4.11 ± 0.09, P > 0.05, respectively), but were lower than those of the BDL group (4.79 ± 0.16, P < 0.05). Acetylcholine-induced endothelium-dependent relaxation that did not differ, in terms of pD2 and maximal relaxation, among the 3 groups studied. Treatment with ADMA (3 × 10-4 mol/L) inhibited acetylcholine-induced relaxation in the 3 groups, but the inhibition was higher (P < 0.05) in the BDL group compared with that for the Sham and PPVL groups. The mRNA and protein expression of DDAH-1 were similar in kidneys from the three groups. Conversely, DDAH-2 expression was increased (P < 0.05) in PPVL and further enhanced (P < 0.05) in the BDL group. However, renal DDAH activity was significantly decreased in the BDL group. CONCLUSION. Cirrhosis increased the inhibitory effect of ADMA on basal- and induced-release of NO in renal arteries, and decreased DDAH activity in the kidney

    Coulomb dissociation of N 20,21

    Get PDF
    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,Îł)N20 and N20(n,Îł)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,Îł)N20 rate is up to a factor of 5 higher at

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum fĂŒr Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision
    corecore