120 research outputs found

    The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD

    Get PDF
    Genome-wide mRNA profiling in lung tissue from human and animal models can provide novel insights into the pathogenesis of chronic obstructive pulmonary disease (COPD). While 6 months of smoke exposure are widely used, shorter durations were also reported. The overlap of short term and long-term smoke exposure in mice is currently not well understood, and their representation of the human condition is uncertain. Lung tissue gene expression profiles of six murine smoking experiments (n = 48) were obtained from the Gene Expression Omnibus (GEO) and analyzed to identify the murine smoking signature. The 'human smoking' gene signature containing 386 genes was previously published in the lung eQTL study (n = 1,111). A signature of mild COPD containing 7 genes was also identified in the same study. The lung tissue gene signature of 'severe COPD' (n = 70) contained 4,071 genes and was previously published. We detected 3,723 differentially expressed genes in the 6 month-exposure mice datasets (FDR <0.1). Of those, 184 genes (representing 48% of human smoking) and 1,003 (representing 27% of human COPD) were shared with the human smoking-related genes and the COPD severity-related genes, respectively. There was 4-fold over-representation of human and murine smoking-related genes (P = 6.7 × 10-26) and a 1.4 fold in the severe COPD -related genes (P = 2.3 × 10-12). There was no significant enrichment of the mice and human smoking-related genes in mild COPD signature. These data suggest that murine smoke models are strongly representative of molecular processes of human smoking but less of COPD

    The Pharmacogenomics of Inhaled Corticosteroids and Lung Function Decline in COPD

    Get PDF
    Inhaled corticosteroids (ICS) are widely prescribed for patients with chronic obstructive pulmonary disease (COPD), yet with variable outcomes and adverse reactions which may be genetically determined. The primary aim of the study was to identify the genetic determinants for FEV1 changes related to ICS therapy. In the Lung Health Study 2 (LHS-2), 1116 COPD patients were randomised to the ICS, triamcinolone acetonide (n=559), or placebo (n=557) with spirometry performed every 6 months for 3 years. We performed a pharmacogenomic genome-wide association study (GWAS) for the genotype-by-ICS treatment effect on 3 years of forced expiratory volume in 1 s (FEV1) changes (estimated as slope) in 802 genotyped LHS-2 participants. Replication was performed in 199 COPD patients randomised to the ICS, fluticasone or placebo. A total of five loci showed genotype-by-ICS interaction at p&lt;5×10-6; of these, SNP rs111720447 on chromosome 7 was replicated (discovery p=4.8×10-6, replication p=5.9×10-5) with the same direction of interaction effect. ENCODE data revealed that in glucocorticoid treated (dexamethasone) A549 alveolar cell line, glucocorticoid receptor binding sites were located near SNP rs111720447. In stratified analyses of LHS-2, genotype at SNP rs111720447 was significantly associated with rate of FEV1 decline in patients taking ICS (C allele beta=56.35 mL·year-1, 95% confidence interval (CI)=29.96, 82.76 mL·yr-1) and also in patients who were assigned to placebo, though the relationship was weaker and in the opposite direction than that in the ICS group (C allele beta=-27.57 mL·year-1, 95% CI=-53.27, -1.87 mL·yr-1). The study uncovered genetic factors associated with FEV1 changes related to ICS in COPD patients, which may provide new insight on the potential biology of steroid responsiveness in COPD.</p

    Molecular dynamics simulations reveal that AEDANS is an inert fluorescent probe for the study of membrane proteins

    Get PDF
    Computer simulations were carried out of a number of AEDANS-labeled single cysteine mutants of a small reference membrane protein, M13 major coat protein, covering 60% of its primary sequence. M13 major coat protein is a single membrane-spanning, α-helical membrane protein with a relatively large water-exposed region in the N-terminus. In 10-ns molecular dynamics simulations, we analyze the behavior of the AEDANS label and the native tryptophan, which were used as acceptor and donor in previous FRET experiments. The results indicate that AEDANS is a relatively inert environmental probe that can move unhindered through the lipid membrane when attached to a membrane protein

    Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

    Get PDF
    Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151)). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases

    Rare single gene disorders:estimating baseline prevalence and outcomes worldwide

    Get PDF
    As child mortality rates overall are decreasing, non-communicable conditions, such as genetic disorders, constitute an increasing proportion of child mortality, morbidity and disability. To date, policy and public health programmes have focused on common genetic disorders. Rare single gene disorders are an important source of morbidity and premature mortality for affected families. When considered collectively, they account for an important public health burden, which is frequently under-recognised. To document the collective frequency and health burden of rare single gene disorders, it is necessary to aggregate them into large manageable groupings and take account of their family implications, effective interventions and service needs. Here, we present an approach to estimate the burden of these conditions up to 5 years of age in settings without empirical data. This approaches uses population-level demographic data, combined with assumptions based on empirical data from settings with data available, to provide population-level estimates which programmes and policy-makers when planning services can use

    Responsiveness to Ipratropium Bromide in Male and Female Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease

    Get PDF
    Introduction: Although the prevalence of chronic obstructive pulmonary disease (COPD) is similar between men and women, current evidence used to support bronchodilator therapy has been generated in therapeutic trials that have predominately enrolled male patients. Here, we determined whether there is any significant sex-related differences in FEV1 responses to ipratropium bromide. Methods: Data from the Lung Health Study (n = 5887; 37% females) were used to determine changes in FEV1 with ipratropium or placebo in male and female subjects with mild to moderate COPD over 5 years. Lung Expression Quantitative Trait Loci (eQTL) dataset was used to determine whether there were any sex-related differences in gene expression for muscarinic (M2 and M3) receptors in lungs of male and female patients. Results: After 4 months, ipratropium therapy increased FEV1 by 6.0% in female and 2.9% in male subjects from baseline values (p = 2.42 × 10−16). This effect was modified by body mass index (BMI) such that the biggest improvements in FEV1 with ipratropium were observed in thin female subjects (p for BMI ∗ sex interaction = 0.044). The sex-related changes in FEV1 related to ipratropium persisted for 2 years (p = 0.0134). Female compared with male lungs had greater gene expression for M3 relative to M2 receptors (p = 6.86 × 10−8). Conclusion: Ipratropium induces a larger bronchodilator response in female than in male patients and the benefits are particularly notable in non-obese females. Female lungs have greater gene expression for the M3 muscarinic receptor relative to M2 receptors than male lungs. Female patients are thus more likely to benefit from ipratropium than male COPD patients

    Role of BAFF in pulmonary autoantibody responses induced by chronic cigarette smoke exposure in mice

    Get PDF
    Emerging evidence suggests that autoimmune processes are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). In this study, we assessed the expression of B-cell activating factor (BAFF) in smokers, and investigated the functional importance of BAFF in the induction and maintenance of cigarette smoke-induced pulmonary antinuclear antibodies (ANA) and tertiary lymphoid tissues (TLTs) using a preclinical mouse model. We observed that BAFF levels were elevated in smokers and mice exposed to cigarette smoke. In mice, BAFF expression was rapidly induced in the lungs following 4 days of cigarette smoke exposure and remained elevated following 8 and 24 weeks of exposure. Alveolar macrophages were the major source of BAFF Blockade of BAFF using a BAFF receptor-Fc (BAFFR-Fc) construct prevented pulmonary ANA and TLT formation when delivered concurrent with cigarette smoke exposure. Under these conditions, no impact on lung inflammation was observed. However, administration of BAFFR-Fc following smoking cessation markedly reduced the number of TLTs and ANA levels and, of note, reduced pulmonary neutrophilia. Altogether, this study shows for the first time a central role of BAFF in the induction and maintenance of cigarette smoke-induced pulmonary ANA and suggests that BAFF blockade following smoking cessation could have beneficial effects on persistent inflammatory processes.In this study, we assessed the expression of B-cell activating factor (BAFF) in smokers, and investigated the functional importance of BAFF in the induction and maintenance of cigarette smoke-induced pulmonary antinuclear antibodies (ANA) and tertiary lymphoid tissues (TLTs) using a preclinical mouse model. Data presented show that BAFF plays a central role in the induction and maintenance of cigarette smoke-induced pulmonary ANA and suggest a therapeutic potential for BAFF blockade in limiting autoimmune processes associated with smoking

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades
    corecore