2,528 research outputs found

    On dynamical gluon mass generation

    Get PDF
    The effective gluon propagator constructed with the pinch technique is governed by a Schwinger-Dyson equation with special structure and gauge properties, that can be deduced from the correspondence with the background field method. Most importantly the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions, a property which allows for a meanigfull truncation. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles. The resulting integral equation, subject to a properly regularized constraint, is solved numerically, and the main features of the solutions are briefly discussed.Comment: Special Article - QNP2006: 4th International Conference on Quarks and Nuclear Physics, Madrid, Spain, 5-10 June 200

    Vacuum energy as a c-function for theories with dynamically generated masses

    Get PDF
    We argue that in asymptotically free non-Abelian gauge theories possessing the phenomenon of dynamical mass generation the β\beta function is negative up to a value of the coupling constant that corresponds to a non-trivial fixed point, in agreement with recent AdS/QCD analysis. This fixed point happens at the minimum of the vacuum energy (Ω\Omega), which, as a characteristic of theories with dynamical mass generation, has the properties of a c-function.Comment: 12 pages, 3 figure

    On One-Loop Gap Equations for the Magnetic Mass in d=3 Gauge Theory

    Get PDF
    Recently several workers have attempted determinations of the so-called magnetic mass of d=3 non-Abelian gauge theories through a one-loop gap equation, using a free massive propagator as input. Self-consistency is attained only on-shell, because the usual Feynman-graph construction is gauge-dependent off-shell. We examine two previous studies of the pinch technique proper self-energy, which is gauge-invariant at all momenta, using a free propagator as input, and show that it leads to inconsistent and unphysical result. In one case the residue of the pole has the wrong sign (necessarily implying the presence of a tachyonic pole); in the second case the residue is positive, but two orders of magnitude larger than the input residue, which shows that the residue is on the verge of becoming ghostlike. This happens because of the infrared instability of d=3 gauge theory. A possible alternative one-loop determination via the effective action also fails. The lesson is that gap equations must be considered at least at two-loop level.Comment: 21 pages, LaTex, 2 .eps figure

    On The Phase Transition in D=3 Yang-Mills Chern-Simons Gauge Theory

    Get PDF
    SU(N)SU(N) Yang-Mills theory in three dimensions, with a Chern-Simons term of level kk (an integer) added, has two dimensionful coupling constants, g2kg^2 k and g2Ng^2 N; its possible phases depend on the size of kk relative to NN. For kNk \gg N, this theory approaches topological Chern-Simons theory with no Yang-Mills term, and expectation values of multiple Wilson loops yield Jones polynomials, as Witten has shown; it can be treated semiclassically. For k=0k=0, the theory is badly infrared singular in perturbation theory, a non-perturbative mass and subsequent quantum solitons are generated, and Wilson loops show an area law. We argue that there is a phase transition between these two behaviors at a critical value of kk, called kck_c, with kc/N2±.7k_c/N \approx 2 \pm .7. Three lines of evidence are given: First, a gauge-invariant one-loop calculation shows that the perturbative theory has tachyonic problems if k29N/12k \leq 29N/12.The theory becomes sensible only if there is an additional dynamic source of gauge-boson mass, just as in the k=0k=0 case. Second, we study in a rough approximation the free energy and show that for kkck \leq k_c there is a non-trivial vacuum condensate driven by soliton entropy and driving a gauge-boson dynamical mass MM, while both the condensate and MM vanish for kkck \geq k_c. Third, we study possible quantum solitons stemming from an effective action having both a Chern-Simons mass mm and a (gauge-invariant) dynamical mass MM. We show that if M \gsim 0.5 m, there are finite-action quantum sphalerons, while none survive in the classical limit M=0M=0, as shown earlier by D'Hoker and Vinet. There are also quantum topological vortices smoothly vanishing as M0M \rightarrow 0.Comment: 36 pages, latex, two .eps and three .ps figures in a gzipped uuencoded fil

    Power-law running of the effective gluon mass

    Get PDF
    The dynamically generated effective gluon mass is known to depend non-trivially on the momentum, decreasing sufficiently fast in the deep ultraviolet, in order for the renormalizability of QCD to be preserved. General arguments based on the analogy with the constituent quark masses, as well as explicit calculations using the operator-product expansion, suggest that the gluon mass falls off as the inverse square of the momentum, relating it to the gauge-invariant gluon condensate of dimension four. In this article we demonstrate that the power-law running of the effective gluon mass is indeed dynamically realized at the level of the non-perturbative Schwinger-Dyson equation. We study a gauge-invariant non-linear integral equation involving the gluon self-energy, and establish the conditions necessary for the existence of infrared finite solutions, described in terms of a momentum-dependent gluon mass. Assuming a simplified form for the gluon propagator, we derive a secondary integral equation that controls the running of the mass in the deep ultraviolet. Depending on the values chosen for certain parameters entering into the Ansatz for the fully-dressed three-gluon vertex, this latter equation yields either logarithmic solutions, familiar from previous linear studies, or a new type of solutions, displaying power-law running. In addition, it furnishes a non-trivial integral constraint, which restricts significantly (but does not determine fully) the running of the mass in the intermediate and infrared regimes. The numerical analysis presented is in complete agreement with the analytic results obtained, showing clearly the appearance of the two types of momentum-dependence, well-separated in the relevant space of parameters. Open issues and future directions are briefly discussed.Comment: 37 pages, 5 figure

    Center vortices and confinement vs. screening

    Full text link
    We study adjoint and fundamental Wilson loops in the center-vortex picture of confinement, for gauge group SU(N) with general N. There are N-1 distinct vortices, whose properties, including collective coordinates and actions, we study. In d=2 we construct a center-vortex model by hand so that it has a smooth large-N limit of fundamental-representation Wilson loops and find, as expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential in this d=2 model for all N, as an expansion in powers of ρ/M2\rho/M^2, where ρ\rho is the vortex density per unit area and M is the vortex inverse size, and find, as expected, screening. The leading term of the adjoint potential shows a roughly linear regime followed by string breaking when the potential energy is about 2M. This leading potential is a universal (N-independent at fixed fundamental string tension KFK_F) of the form (KF/M)U(MR)(K_F/M)U(MR), where R is the spacelike dimension of a rectangular Wilson loop. The linear-regime slope is not necessarily related to KFK_F by Casimir scaling. We show that in d=2 the dilute vortex model is essentially equivalent to true d=2 QCD, but that this is not so for adjoint representations; arguments to the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the Wilson loop in the vortex flux. Most of our arguments are expected to hold in d=3,4 also.Comment: 29 pages, LaTex, 1 figure. Minor changes; references added; discussion of factorization sharpened. Major conclusions unchange

    Center Vortices, Nexuses, and the Georgi-Glashow Model

    Get PDF
    In a gauge theory with no Higgs fields the mechanism for confinement is by center vortices, but in theories with adjoint Higgs fields and generic symmetry breaking, such as the Georgi-Glashow model, Polyakov showed that in d=3 confinement arises via a condensate of 't Hooft-Polyakov monopoles. We study the connection in d=3 between pure-gauge theory and the theory with adjoint Higgs by varying the Higgs VEV v. As one lowers v from the Polyakov semi- classical regime v>>g (g is the gauge coupling) toward zero, where the unbroken theory lies, one encounters effects associated with the unbroken theory at a finite value v\sim g, where dynamical mass generation of a gauge-symmetric gauge- boson mass m\sim g^2 takes place, in addition to the Higgs-generated non-symmetric mass M\sim vg. This dynamical mass generation is forced by the infrared instability (in both 3 and 4 dimensions) of the pure-gauge theory. We construct solitonic configurations of the theory with both m,M non-zero which are generically closed loops consisting of nexuses (a class of soliton recently studied for the pure-gauge theory), each paired with an antinexus, sitting like beads on a string of center vortices with vortex fields always pointing into (out of) a nexus (antinexus); the vortex magnetic fields extend a transverse distance 1/m. An isolated nexus with vortices is continuously deformable from the 't Hooft-Polyakov (m=0) monopole to the pure-gauge nexus-vortex complex (M=0). In the pure-gauge M=0 limit the homotopy Π2(SU(2)/U(1))=Z2\Pi_2(SU(2)/U(1))=Z_2 (or its analog for SU(N)) of the 't Hooft monopoles is no longer applicable, and is replaced by the center-vortex homotopy Π1(SU)N)/ZN)=ZN\Pi_1(SU)N)/Z_N)=Z_N.Comment: 27 pages, LaTeX, 3 .eps figure

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    Electroweak Sudakov logarithms in the Coulomb gauge

    Get PDF
    We describe a formalism for calculating electroweak Sudakov logarithms in the Coulomb gauge. This formalism is applicable to arbitrary electroweak processes. For illustration we focus on the specific reactions e^+e^- -> f \bar{f} and e^+e^- -> W_T^+W_T^-, W_L^+W_L^-, which contain all the salient details of dealing with the various types of particles. We discuss an explicit two-loop calculation and have a critical look at the (non-)exponentiation and factorisation properties of the Sudakov logarithms in the Standard Model.Comment: 6 pages, LaTeX, uses npb.sty. Talk given at the 5th Zeuthen Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Koenigstein-Weissig, Germany, 9-14 Apr 200

    On the connection between the pinch technique and the background field method

    Full text link
    The connection between the pinch technique and the background field method is further explored. We show by explicit calculations that the application of the pinch technique in the framework of the background field method gives rise to exactly the same results as in the linear renormalizable gauges. The general method for extending the pinch technique to the case of Green's functions with off-shell fermions as incoming particles is presented. As an example, the one-loop gauge independent quark self-energy is constructed. We briefly discuss the possibility that the gluonic Green's functions, obtained by either method, correspond to physical quantities.Comment: 13 pages and 3 figures, all included in a uuencoded file, to appear in Physical Review
    corecore