It has been remarked in several previous works that the combination of center
vortices and nexuses (a nexus is a monopole-like soliton whose world line
mediates certain allowed changes of field strengths on vortex surfaces) carry
topological charge quantized in units of 1/N for gauge group SU(N). These
fractional charges arise from the interpretation of the standard topological
charge integral as a sum of (integral) intersection numbers weighted by certain
(fractional) traces. We show that without nexuses the sum of intersection
numbers gives vanishing topological charge (since vortex surfaces are closed
and compact). With nexuses living as world lines on vortices, the contributions
to the total intersection number are weighted by different trace factors, and
yield a picture of the total topological charge as a linking of a closed nexus
world line with a vortex surface; this linking gives rise to a non-vanishing
but integral topological charge. This reflects the standard 2\pi periodicity of
the theta angle. We argue that the Witten-Veneziano relation, naively violating
2\pi periodicity, scales properly with N at large N without requiring 2\pi N
periodicity. This reflects the underlying composition of localized fractional
topological charge, which are in general widely separated. Some simple models
are given of this behavior. Nexuses lead to non-standard vortex surfaces for
all SU(N) and to surfaces which are not manifolds for N>2. We generalize
previously-introduced nexuses to all SU(N) in terms of a set of fundamental
nexuses, which can be distorted into a configuration resembling the 't
Hooft-Polyakov monopole with no strings. The existence of localized but
widely-separated fractional topological charges, adding to integers only on
long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure