202 research outputs found

    Engineered atomic states for precision interferometry

    Get PDF
    Modern physics relies on two distinct fun- damental theories, General Relativity and Quantum Mechanics. Both describe on one hand macroscopic and cosmological phenomena such as gravitational waves and black holes and on the other hand micro- scopic phenomena as superfluidity or the spin of par- ticles. The unification of these two theories remains, so far, an unsolved problem. Interestingly, candidate Quantum Gravity theories predict a violation of the principles of General Relativity at different levels. It is, therefore, of a timely interest to detect violations of these principles and determine at which level they occur

    Platform and environment requirements of a satellite quantum test of the Weak Equivalence Principle at the 10−1710^{-17} level

    Full text link
    The Space Time Explorer and QUantum Equivalence principle Space Test (STE-QUEST) recently proposed, aims at performing a precision test of the weak equivalence principle (WEP), a fundamental cornerstone of General Relativity. Taking advantage of the ideal operation conditions for high-precision quantum sensing on board of a satellite, it aims to detect possible violations of WEP down to the 10−1710^{-17} level. This level of performance leads to stringent environmental requirements on the control of the spacecraft. We assume an operation of a dual-species atom interferometer of rubidium and potassium isotopes in a double-diffraction configuration and derive the constraints to achieve an E\"otv\"os parameter η=10−17\eta=10^{-17} in statistical and systematic uncertainties. We show that technical heritage of previous satellite missions, such as MICROSCOPE, satisfies the platform requirements to achieve the proposed objectives underlying the technical readiness of the STE-QUEST mission proposal.Comment: 18 pages, 6 figure

    Matter-wave collimation to picokelvin energies with scattering length and potential shape control

    Full text link
    We study the impact of atomic interactions on an in-situ collimation method for matter-waves. Building upon an earlier study with 87^{87}Rb, we apply a lensing protocol to 39^{39}K where the atomic scattering length can be tailored by means of magnetic Feshbach resonances. Minimizing interactions, we show an enhancement of the collimation compared to the strong interaction regime, realizing ballistic 2D expansion energies of 438(77) pK in our experiment. Our results are supported by an accurate simulation, describing the ensemble dynamics, which we further use to study the behavior of various trap configurations for different interaction strengths. Based on our findings we propose an advanced scenario which allows for 3D expansion energies below 16 pK by implementing an additional pulsed delta-kick collimation directly after release from the trapping potential. Our results pave the way to achieve state-of-the-art quantum state in typical dipole trap setups required to perform ultra-precise measurements without the need of complex micro-gravity or long baselines environments

    All-optical matter-wave lens using time-averaged potentials

    Get PDF
    The precision of matter-wave sensors benefits from interrogating large-particle-number atomic ensembles at high cycle rates. Quantum-degenerate gases with their low effective temperatures allow for constraining systematic errors towards highest accuracy, but their production by evaporative cooling is costly with regard to both atom number and cycle rate. In this work, we report on the creation of cold matter-waves using a crossed optical dipole trap and shaping them by means of an all-optical matter-wave lens. We demonstrate the trade off between lowering the residual kinetic energy and increasing the atom number by reducing the duration of evaporative cooling and estimate the corresponding performance gain in matter-wave sensors. Our method is implemented using time-averaged optical potentials and hence easily applicable in optical dipole trapping setups. © 2022, The Author(s)

    Interacting quantum mixtures for precision atom interferometry

    Get PDF
    We present a source engineering concept for a binary quantum mixture suitable as input for differential, precision atom interferometry with drift times of several seconds. To solve the non-linear dynamics of the mixture, we develop a set of scaling approach equations and verify their validity contrasting it to the one of a system of coupled Gross-Pitaevskii equations. This scaling approach is a generalization of the standard approach commonly used for single species. Its validity range is discussed with respect to intra- and inter-species interaction regimes. We propose a multi-stage, non-linear atomic lens sequence to simultaneously create dual ensembles with ultra-slow kinetic expansion energies, below 15 pK. Our scheme has the advantage of mitigating wave front aberrations, a leading systematic effect in precision atom interferometry

    A Portable Luminometer with a Disposable Electrochemiluminescent Biosensor for Lactate Determination

    Get PDF
    A hand-held luminometer for measuring electrochemiluminescence (ECL) for lactate determination and based on one-shot biosensors fabricated using screen-printed electrodes is described. The lactate recognition system is based on lactate oxidase and the transduction system consists of electro-oxidation of luminol, with all the reagents immobilized in a Methocel membrane. The membrane composition and reaction conditions have been optimized to obtain adequate sensitivity. The luminometer is based on a large silicon photodiode as detector and includes a programmable potentiostat to initialize the chemical reaction and signal processing circuitry, designed to acquire a low level photocurrent with offset cancelation, low pass filtering for noise attenuation and adjustable gain up to 1012 V/A. The one-shot biosensor responds to lactate rapidly, with an acquisition time of 2.5 min, obtaining a linear dependence from 8 × 10−6 to 2 × 10−4 M, a detection limit of 2.4 × 10−6 M and a sensor-to-sensor reproducibility (relative standard deviation, RSD) of around 7–10 % at the medium level of the range

    Space-borne Bose-Einstein condensation for precision interferometry

    Full text link
    Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interferometry employing Bragg scattering of BECs during the six-minute space flight. In this letter, we focus on the phase transition and the collective dynamics of BECs, whose impact is magnified by the extended free-fall time. Our experiments demonstrate a high reproducibility of the manipulation of BECs on the atom chip reflecting the exquisite control features and the robustness of our experiment. These properties are crucial to novel protocols for creating quantum matter with designed collective excitations at the lowest kinetic energy scales close to femtokelvins.Comment: 6 pages, 4 figure

    Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    Get PDF
    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated
    • 

    corecore