1,527 research outputs found

    A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation.

    Get PDF
    A variety of cellular pathways are regulated by protein modifications with ubiquitin-family proteins. SUMO, the Small Ubiquitin-like MOdifier, is covalently attached to lysine on target proteins via a cascade reaction catalyzed by E1, E2, and E3 enzymes. A major barrier to understanding the diverse regulatory roles of SUMO has been a lack of suitable methods to identify protein sumoylation sites. Here we developed a mass-spectrometry (MS) based approach combining chemical and enzymatic modifications to identify sumoylation sites. We applied this method to analyze the auto-sumoylation of the E1 enzyme in vitro and compared it to the GG-remnant method using Smt3-I96R as a substrate. We further examined the effect of smt3-I96R mutation in vivo and performed a proteome-wide analysis of protein sumoylation sites in Saccharomyces cerevisiae. To validate these findings, we confirmed several sumoylation sites of Aos1 and Uba2 in vivo. Together, these results demonstrate that our chemical and enzymatic method for identifying protein sumoylation sites provides a useful tool and that a combination of methods allows a detailed analysis of protein sumoylation sites

    Does Every Quasar Harbor A Blazar?

    Get PDF
    Assuming there is a blazar type continuum in every radio-loud quasar, we find that the free-free heating due to the beamed infrared continuum can greatly enhance collisionally excited lines, and thus explain the stronger CIV λ\lambda1549 line emission observed in radio loud quasars. We further predict that the CIV line should show variability {\it not} associated with observed continuum or Lyα\alpha variability.Comment: 15 pages, 3 figures; to appear in Astrophys. J. Let

    Transfer print techniques for heterogeneous integration of photonic components

    Get PDF
    The essential functionality of photonic and electronic devices is contained in thin surface layers leaving the substrate often to play primarily a mechanical role. Layer transfer of optimised devices or materials and their heterogeneous integration is thus a very attractive strategy to realise high performance, low-cost circuits for a wide variety of new applications. Additionally, new device configurations can be achieved that could not otherwise be realised. A range of layer transfer methods have been developed over the years including epitaxial lift-off and wafer bonding with substrate removal. Recently, a new technique called transfer printing has been introduced which allows manipulation of small and thin materials along with devices on a massively parallel scale with micron scale placement accuracies to a wide choice of substrates such as silicon, glass, ceramic, metal and polymer. Thus, the co-integration of electronics with photonic devices made from compound semiconductors, silicon, polymer and new 2D materials is now achievable in a practical and scalable method. This is leading to exciting possibilities in microassembly. We review some of the recent developments in layer transfer and particularly the use of the transfer print technology for enabling active photonic devices on rigid and flexible foreign substrates

    Robust determination of the Higgs couplings: Power to the data

    Get PDF
    We study the indirect effects of new physics on the phenomenology of the recently discovered "Higgs-like" particle. In a model-independent framework these effects can be parametrized in terms of an effective Lagrangian at the electroweak scale. In a theory in which the S U ( 2 ) L × U ( 1 ) Y gauge symmetry is linearly realized they appear at lowest order as dimension-six operators, containing all the standard model fields including the light scalar doublet, with unknown coefficients. We discuss the choice of operator basis which allows us to make better use of all the available data to determine the coefficients of the new operators. We illustrate our present knowledge of those by performing a global five-parameter fit to the existing data which allows simultaneous determination of the Higgs couplings to gluons, electroweak gauge bosons, bottom quarks, and tau leptons. We find that for all scenarios considered the standard model predictions for each individual Higgs coupling and observable are within the corresponding 90% C.L. allowed range, the only exception being the Higgs branching ratio into two photons for the scenario with standard couplings of the Higgs to fermions. We finish by commenting on the implications of the results for unitarity of processes at higher energies

    Constraining anomalous Higgs boson interactions

    Get PDF
    The recently announced Higgs boson discovery marks the dawn of the direct probing of the electroweak symmetry breaking sector. Sorting out the dynamics responsible for electroweak symmetry breaking now requires probing the Higgs boson interactions and searching for additional states connected to this sector. In this work, we analyze the constraints on Higgs boson couplings to the standard model gauge bosons using the available data from Tevatron and LHC. We work in a model-independent framework expressing the departure of the Higgs boson couplings to gauge bosons by dimension-six operators. This allows for independent modifications of its couplings to gluons, photons, and weak gauge bosons while still preserving the Standard Model (SM) gauge invariance. Our results indicate that best overall agreement with data is obtained if the cross section of Higgs boson production via gluon fusion is suppressed with respect to its SM value and the Higgs boson branching ratio into two photons is enhanced, while keeping the production and decays associated to couplings to weak gauge bosons close to their SM prediction

    Determining Triple Gauge Boson Couplings from Higgs Data

    Get PDF
    In the framework of effective Lagrangians with the S U ( 2 ) L × U ( 1 ) Y symmetry linearly realized, modifications of the couplings of the Higgs field to the electroweak gauge bosons are related to anomalous triple gauge couplings (TGCs). Here, we show that the analysis of the latest Higgs boson production data at the LHC and Tevatron give rise to strong bounds on TGCs that are complementary to those from direct TGC analysis. We present the constraints on TGCs obtained by combining all available data on direct TGC studies and on Higgs production analysis

    Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans

    Get PDF
    Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl-DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. © 2013 The Author(s)

    Energy spread of ultracold electron bunches extracted from a laser cooled gas

    Full text link
    Ultrashort and ultracold electron bunches created by near-threshold femtosecond photoionization of a laser-cooled gas hold great promise for single-shot ultrafast diffraction experiments. In previous publications the transverse beam quality and the bunch length have been determined. Here the longitudinal energy spread of the generated bunches is measured for the first time, using a specially developed Wien filter. The Wien filter has been calibrated by determining the average deflection of the electron bunch as a function of magnetic field. The measured relative energy spread σUU=0.64±0.09%\frac{\sigma_{U}}{U} = 0.64 \pm 0.09\% agrees well with the theoretical model which states that it is governed by the width of the ionization laser and the acceleration length

    Periodic Active Case Finding for TB: When to Look?

    Get PDF
    OBJECTIVE: To investigate the factors influencing the performance and cost-efficacy of periodic rounds of active case finding (ACF) for TB. METHODS: A mathematical model of TB dynamics and periodic ACF (PACF) in the HIV era, simplified by assuming constant prevalence of latent TB infection, is analyzed for features that control intervention outcome, measured as cases averted and cases found. Explanatory variables include baseline TB incidence, interval between PACF rounds, and different routine and PACF case-detection rates among HIV-infected and uninfected TB cases. FINDINGS: PACF can be cost-saving over a 10 year time frame if the cost-per-round is lower than a threshold proportional to initial incidence and cost-per-case-treated. More cases are averted at higher baseline incidence rates, when more potent PACF strategies are used, intervals between PACF rounds are shorter, and when the ratio of HIV-negative to positive TB cases detected is higher. More costly approaches, e.g. radiographic screening, can be as cost-effective as less costly alternatives if PACF case-detection is higher and/or implementation less frequent. CONCLUSION: Periodic ACF can both improve control and save medium-term health care costs in high TB burden settings. Greater costs of highly effective PACF at frequent (e.g. yearly) intervals may be offset by higher numbers of cases averted in populations with high baseline TB incidence, higher prevalence of HIV-uninfected cases, higher costs per-case-treated, and more effective routine case-detection. Less intensive approaches may still be cost-neutral or cost-saving in populations lacking one or more of these key determinants

    Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke

    Get PDF
    Stroke is the world's leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. SIGNIFICANCE STATEMENT There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients
    corecore