147 research outputs found
Growth, Condition, and Trophic Relations of Stocked Trout in Southern Appalachian Mountain Streams
Stream trout fisheries are among the most popular and valuable in the United States, but many are dependent on hatcheries to sustain fishing and harvest. Thus, understanding the ecology of hatchery‐reared trout stocked in natural environments is fundamental to management. We evaluated the growth, condition, and trophic relations of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss that were stocked in southern Appalachian Mountain streams in western North Carolina. Stocked and wild (naturalized) trout were sampled over time (monthly; September 2012–June 2013) to compare condition and diet composition and to evaluate temporal dynamics of trophic position with stable isotope analysis. Relative weights (Wr) of stocked trout were inversely associated with their stream residence time but were consistently higher than those of wild trout. Weight loss of harvested stocked trout was similar among species and sizes, but fish stocked earlier lost more weight. Overall, 40% of 141 stomachs from stocked trout were empty compared to 15% of wild trout stomachs (N = 26). We identified a much higher rate of piscivory in wild trout (18 times that of stocked trout), and wild trout were 4.3 times more likely to consume gastropods relative to stocked trout. Hatchery‐reared trout were isotopically similar to co‐occurring wild fish for both δ13C and δ15N values but were less variable than wild trout. Differences in sulfur isotope ratios (δ34S) between wild and hatchery‐reared trout indicated that the diets of wild fish were enriched in δ34S relative to the diets of hatchery‐reared fish. Although hatcheryreared trout consumed prey items similar to those of wild fish, differences in consumption or behavior (e.g., reduced feeding) may have resulted in lower condition and negative growth. These findings provide critical insight on the trophic dynamics of stocked trout and may assist in developing and enhancing stream trout fisheries
The \u3ci\u3ePesticides and Farmworker Health Toolkit\u3c/i\u3e: An Innovative Model for Developing an Evidence-Informed Program for a Low-Literacy, Latino Immigrant Audience
Migrant and seasonal farmworkers are typically Spanish-speaking, Latino immigrants with limited formal education and low literacy skills and, as such, are a vulnerable population. We describe the development of the Pesticides and Farmworker Health Toolkit, a pesticide safety and health curriculum designed to communicate to farmworkers pesticide hazards found in their working environments. Using evidence-informed principles, the Toolkit curriculum for low-literacy, Latino farmworkers and its developmental process described herein serve as an innovative and useful model for Extension programming with non-traditional audiences
Upper Thermal Tolerances of Early Life Stages of Freshwater Mussels
Freshwater mussels (order Unioniformes) fulfill an essential role in benthic aquatic communities, but also are among the most sensitive and rapidly declining faunal groups in North America. Rising water temperatures, caused by global climate change, industrial discharges, drought, or land development, could further challenge imperiled unionid communities. The aim of our study was to determine the upper thermal tolerances of the larval (glochidia) and juvenile life stages of freshwater mussels. Glochidia of 8 species of mussels were tested: Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata, Lasmigona complanata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis. Seven of these species also were tested as juveniles. Survival trends were monitored while mussels held at 3 acclimation temperatures (17, 22, and 27°C) were exposed to a range of common and extreme water temperatures (20–42°C) in standard acute laboratory tests. The average median lethal temperature (LT50) among species in 24-h tests with glochidia was 31.6°C and ranged from 21.4 to 42.7°C. The mean LT50 in 96-h juvenile tests was 34.7°C and ranged from 32.5 to 38.8°C. Based on comparisons of LT50s, thermal tolerances differed among species for glochidia, but not for juveniles. Acclimation temperature did not affect thermal tolerance for either life stage. Our results indicate that freshwater mussels already might be living close to their upper thermal tolerances in some systems and, thus, might be at risk from rising environmental temperatures
Factors Governing Variation In Fish Tissue Mercury Concentrations Across North Carolina
The North Carolina Division of Water Quality (NCDWQ) has collected data on mercury concentrations in fish tissue from numerous waterbodies since 1990. Reported mercury levels are highly variable; fish tissue concentrations often vary 75-fold or more within individual species across the state, and 10-fold to 100-fold among samples within and between adjacent counties. We discuss the construction and preliminary analysis of a comprehensive statewide database combining NCDWQ fish tissue mercury concentrations with all other available and relevant biotic and abiotic environmental variables
The Pesticide Risk Beliefs Inventory: A Quantitative Instrument for the Assessment of Beliefs about Pesticide Risks
Recent media attention has focused on the risks that agricultural pesticides pose to the environment and human health; thus, these topics provide focal areas for scientists and science educators to enhance public understanding of basic toxicology concepts. This study details the development of a quantitative inventory to gauge pesticide risk beliefs. The goal of the inventory was to characterize misconceptions and knowledge gaps, as well as expert-like beliefs, concerning pesticide risk. This study describes the development and field testing of the Pesticide Risk Beliefs Inventory with an important target audience: pesticide educators in a southeastern U.S. state. The 19-item, Likert-type inventory was found to be psychometrically sound with a Cronbach’s alpha of 0.780 and to be a valuable tool in capturing pesticide educators’ beliefs about pesticide risk, assessing beliefs in four key categories. The Pesticide Risk Beliefs Inventory could be useful in exploring beliefs about pesticide risks and in guiding efforts to address misconceptions held by a variety of formal and informal science learners, educators, practitioners, the agricultural labor force, and the general public
Forward to the past: reinventing intelligence-led policing in Britain
Drawing on archival, secondary material and primary research, this paper examines 'Total Policing', the strategy recently adopted by London's Metropolitan Police. It situates that analysis within a critical examination of other innovative policing strategies previously employed in Britain. It argues that the prospects for Total Policing depend upon the resolution of long-standing problems such as: the inadequacy and inefficiency of local intelligence work; the paucity of evidence for the success of commanders' previous efforts to harness together the component parts of their forces in pursuit of a single mission; and, above all, a seeming inability to learn the lessons of the past. © 2013 © 2013 Taylor & Francis
Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H.
Late-onset Alzheimer\u27s disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host
Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram
Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram
Prophylactic evaluation of verubecestat on disease- and symptom-modifying effects in 5XFAD mice.
Introduction: Alzheimer\u27s disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer\u27s Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline.
Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aβ) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data.
Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aβ40 and Aβ42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake.
Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aβ levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD
- …