2,572 research outputs found

    The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic

    Get PDF
    Purpose. To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations. Methods. Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array. Results. While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with “L/M interchange” mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (∌25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic. Conclusions. The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for evaluating treatment efficacy

    Activism, affect, identification: trans documentary in France and Spain and its reception

    Get PDF
    This article explores the documentation of trans activism in France and Spain since the 2000s. The first part addresses questions surrounding the place of affect and narrative in documentary film, particularly in relation to trans issues. The second part o f the article analyses an audience case study from a screening at the International Gay and Lesbian Film Festival in Barcelona of Valérie Mitteaux's Girl or Boy, My Sex is not my Gender (2011), considering how different viewers respond to the representatio n of trans identities. The article builds on qualitative research whilst extending the exploration of sexuality and gender in previous audience studies to a consideration of documentary film, seeking to provide a more nuanced understanding of what audience claims for identification in politicised contexts mean

    Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains

    Get PDF
    Global Synthetic Aperture Radar (SAR) measurements made over the past decades provide insights into the lateral extent of magmatic domains, and capture volcanic process on scales useful for volcano monitoring. Satellite-based SAR imagery has great potential for monitoring topographic change, the distribution of eruptive products and surface displacements (InSAR) at subaerial volcanoes. However, there are challenges in applying it routinely, as would be required for the reliable operational assessment of hazard. The deformation detectable depends upon satellite repeat time and swath widths, relative to the spatial and temporal scales of volcanological processes. We describe the characteristics of InSAR-measured volcano deformation over the past two decades, highlighting both the technique’s capabilities and its limitations as a monitoring tool. To achieve this, we draw on two global datasets of volcano deformation: the Smithsonian Institution Volcanoes of the World database and the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics volcano deformation catalogue, as well as compiling some measurement characteristics and interpretations from the primary literature. We find that a higher proportion of InSAR observations capture non-eruptive and non-magmatic processes than those from ground-based instrument networks, and that both transient ( 5 years) deformation episodes are under-represented. However, satellite radar is already used to assess the development of extended periods of unrest and long-lasting eruptions, and improved spatial resolution and coverage have resulted in the detection of previously unrecognised deformation at both ends of the spatial scale (~ 10 to > 1000 kmÂČ). ‘Baseline’ records of past InSAR measurements, including ‘null’ results, are fundamental for any future interpretation of interferograms in terms of hazard‚ both by providing information about past deformation at an individual volcano, and for assessing the characteristics of deformation that are likely to be detectable (and undetectable) using InSAR. More than half of all InSAR deformation signals attributed to magmatic processes have sources in the shallow crust (< 5 km depth). While the depth distribution of InSAR-derived deformation sources is affected by measurement limitations, their lateral distribution provides information about the extent of active magmatic domains. Deformation is common (24% of all potentially magmatic events) at loci ≄5 km away from the nearest active volcanic vent. This demonstrates that laterally extensive active magmatic domains are not exceptional, but can comprise the shallowest part of trans-crustal magmatic systems in a range of volcanic settings

    Sequential chemotherapy and intensity-modulated radiation therapy in the management of locoregionally advanced nasopharyngeal carcinoma: Experience of 370 consecutive cases

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To investigate the outcome of locoregionally advanced nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT) after induction chemotherapy, with or without concomitant chemotherapy.</p> <p>Methods</p> <p>Between August 2003 and March 2007, 370 patients with locoregionally advanced NPC were treated with IMRT. Presenting stages were stage IIB in 62, stage III in 197, and stage IVA/B in 111 patients. All patients except for 36 patients with cervical lymphadenopathy of 4 cm or less in diameter received 2 cycles of cisplatin-based neoadjuvant chemotherapy. Forty-eight patients received cisplatin-based concurrent chemotherapy as well.</p> <p>Results</p> <p>With a median follow-up time of 31 months (range 5 to 61 months), the 3-year local control, regional control, metastasis-free survival (MFS), disease-free survival (DFS) and overall survival (OS) rates were 95%, 97%, 86%, 81% and 89%, respectively. Multivariate analyses revealed that both age (≀ 60 vs. >60) and N-classification are significant prognosticators for OS (P = 0.001, hazard ratio [HR] 2.395, 95% confidence interval [CI] 1.432-4.003; P = 0.012, hazard ratio [HR] 2.614, 95% confidence interval [CI] 1.235-5.533); And N-classification is the only significant predicative factor for MFS (P = 0.002, [HR] 1.99, 95% CI 1.279-3.098). T-classification and concurrent chemotherapy were not significant prognostic factors for local/regional control, MFS, DFS, or OS. Subgroup analysis revealed that concurrent chemotherapy provided no significant benefit to IMRT in locoregionally advanced NPC, but was responsible for higher rates of grade 3 or 4 acute toxicities (50% vs. 29.8%, P < 0.005). No grade 3 or 4 late toxicity including xerostomia was observed. However, two patients treated with IMRT and neoadjuvant but without concurrent and adjuvant chemotherapy died of treatment related complications.</p> <p>Conclusion</p> <p>IMRT following neoadjuvant chemotherapy produced a superb outcome in terms of local control, regional control, MFS, DFS, and OS rates in patients with stage IIB to IVB NPC. Effective treatment strategy is urgently needed for distant control in patients diagnosed with locoregionally advanced NPC.</p

    Evo-devo of human adolescence: beyond disease models of early puberty

    Get PDF
    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research

    Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse

    Get PDF
    Aims/hypothesis: Excessive production of reactive oxygen species (ROS) plays a detrimental role in the progression of diabetic kidney disease (DKD). Renal oxidative stress activates proinflammatory cytokines, chemokines and profibrotic factors in DKD. Increased expression of the prooxidant enzyme NADPH oxidase (NOX) 5 in kidneys of diabetic individuals has been hypothesised to correlate with renal injury and progression of DKD. Since the gene encoding NOX5 is not expressed in the mouse genome, we examined the effect of inducible human NOX5 expression in renal cells, selectively in either endothelial cells or vascular smooth muscle cells (VSMCs)/mesangial cells in a model of insulin-deficient diabetes, the Akita mouse. Methods: Renal structural injury, including glomerulosclerosis, mesangial expansion and extracellular matrix protein accumulation, as well as renal inflammation, ROS formation and albuminuria, were examined in the NOX5 transgenic Akita mouse model of DKD. Results: Expression of NOX5 in either endothelial cells or VSMCs/mesangial cells in diabetic Akita mice was associated with increased renal inflammation (monocyte chemoattractant protein-1, NF-ÎșB and toll-like receptor-4) and glomerulosclerosis, as well as upregulation of protein kinase C-α and increased expression of extracellular matrix genes (encoding collagen III, fibronectin and α-smooth muscle actin) and proteins (collagen IV), most likely mediated via enhanced renal ROS production. The effect of VSMC/mesangial cell-specific NOX5 expression resulted in more pronounced renal fibrosis in comparison with endothelial cell-specific NOX5 expression in diabetic mice. In addition, albuminuria was significantly increased in diabetic VEcad+NOX5+ mice (1192 ± 194 ÎŒg/24 h) when compared with diabetic VEcad+NOX5− mice (770 ± 98 ÎŒg/24 h). Furthermore, the regulatory components of NOX5 activation, including heat shock protein 90 and transient receptor potential cation channel subfamily C member 6, were upregulated only in the presence of both NOX5 and diabetes. Conclusions/interpretation: The findings from this study highlight the importance of NOX5 in promoting diabetes-related renal injury and provide the rationale for the development of a selective NOX5 inhibitor for the prevention and/or treatment of DKD

    ACR appropriateness criteriaÂź nasal cavity and paranasal sinus cancers

    Full text link
    The American College of Radiology (ACR) Appropriateness Criteria are evidence‐based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer‐reviewed journals and the application of well‐established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Here, we present the Appropriateness Criteria for cancers arising in the nasal cavity and paranasal sinuses (maxillary, sphenoid, and ethmoid sinuses). This includes clinical presentation, prognostic factors, principles of management, and treatment outcomes. Controversies regarding management of cervical lymph nodes are discussed. Rare and unusual nasal cavity cancers, such as esthesioneuroblastoma and sinonasal undifferentiated carcinomas, are included. © 2016 American College of Radiology. Head Neck, 2016 © 2016 Wiley Periodicals, Inc. Head Neck 39: 407–418, 2017Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136245/1/hed24639.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136245/2/hed24639_am.pd

    CADD: predicting the deleteriousness of variants throughout the human genome

    Get PDF
    Combined Annotation-Dependent Depletion (CADD) is a widely used measure of variant deleteriousness that can effectively prioritize causal variants in genetic analyses, particularly highly penetrant contributors to severe Mendelian disorders. CADD is an integrative annotation built from more than 60 genomic features, and can score human single nucleotide variants and short insertion and deletions anywhere in the reference assembly. CADD uses a machine learning model trained on a binary distinction between simulated de novo variants and variants that have arisen and become fixed in human populations since the split between humans and chimpanzees; the former are free of selective pressure and may thus include both neutral and deleterious alleles, while the latter are overwhelmingly neutral (or, at most, weakly deleterious) by virtue of having survived millions of years of purifying selection. Here we review the latest updates to CADD, including the most recent version, 1.4, which supports the human genome build GRCh38. We also present updates to our website that include simplified variant lookup, extended documentation, an Application Program Interface and improved mechanisms for integrating CADD scores into other tools or applications. CADD scores, software and documentation are available at https://cadd.gs.washington.edu

    Endothelial NOX5 Obliterates the Reno-Protective Effect of Nox4 Deletion by Promoting Renal Fibrosis via Activation of EMT and ROS-Sensitive Pathways in Diabetes

    Get PDF
    Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention
    • 

    corecore