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Abstract 

Purpose. 

To evaluate retinal structure and photoreceptor mosaic integrity 

in subjects with OPN1LW and OPN1MW mutations. 

Methods. 

Eleven subjects were recruited, eight of whom have been 

previously described. Cone and rod density was measured using 

images of the photoreceptor mosaic obtained from an adaptive optics 

scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner 

retinal thickness, and outer nuclear layer plus Henle fiber layer 

(ONL+HFL) thickness were measured using cross-sectional spectral-

domain optical coherence tomography (SD-OCT) images. Molecular 

genetic analyses were performed to characterize the 

OPN1LW/OPN1MW gene array. 

Results. 

While disruptions in retinal lamination and cone mosaic 

structure were observed in all subjects, genotype-specific differences 

were also observed. For example, subjects with “L/M interchange” 

mutations resulting from intermixing of ancestral OPN1LW and 

OPN1MW genes had significant residual cone structure in the 

parafovea (∼25% of normal), despite widespread retinal disruption 

that included a large foveal lesion and thinning of the parafoveal inner 

retina. These subjects also reported a later-onset, progressive loss of 

visual function. In contrast, subjects with the C203R missense 

mutation presented with congenital blue cone monochromacy, with 

retinal lamination defects being restricted to the ONL+HFL and the 

degree of residual cone structure (8% of normal) being consistent with 

that expected for the S-cone submosaic. 

Conclusions. 

The photoreceptor phenotype associated with OPN1LW and 

OPN1MW mutations is highly variable. These findings have implications 
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for the potential restoration of visual function in subjects with opsin 

mutations. Our study highlights the importance of high-resolution 

phenotyping to characterize cellular structure in inherited retinal 

disease; such information will be critical for selecting patients most 

likely to respond to therapeutic intervention and for establishing a 

baseline for evaluating treatment efficacy. 

Introduction 

Mutations in the long-wavelength (L) and middle-wavelength 

(M) cone opsin genes (designated OPN1LW and OPN1MW, 

respectively) have been associated with a wide range of visual defects 

including red-green color vision deficiency, blue cone monochromacy 

(BCM), X-linked cone dystrophy, X-linked cone dysfunction, and high 

myopia with abnormal cone function.1–16 While characterization of 

visual function in these individuals is relatively straightforward, less is 

known about how the presence of OPN1LW and OPN1MW mutations 

affects retinal structure. Such information will be of paramount 

importance for advancing efforts to restore cone function in individuals 

with OPN1LW and OPN1MW mutations. 

Recent studies have shown that OPN1LW and OPN1MW 

mutations resulting in congenital red-green color vision defects are 

associated with a variable retinal phenotype, with some individuals 

showing disrupted cone structure and/or thinning of the outer nuclear 

layer (ONL).8,14,17,18 It is difficult to draw definite conclusions about the 

pathogenicity of a specific mutant from comparisons of these 

individuals, as there may be other factors influencing the retinal 

phenotype. For example, during development, there is competition 

between the first two genes in the X-chromosome opsin array in the 

nascent L/M cones that ends with only one of the two genes being 

expressed in each cell.19 It has been shown that the relative proportion 

of cones expressing each of the two genes in the L/M array varies 

widely (over 40-fold).20,21 Thus previously observed differences in 

retinal phenotype may be confounded by differences in the relative 

expression of the mutant opsin with respect to the normal opsin. As 

the degree of retained cone photoreceptor structure is related to the 
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therapeutic potential of a given retina,22 elucidation of genotype-

specific retinal phenotypes is essential. 

In one of the more serious vision disorders associated with 

OPN1LW and OPN1MW mutations, a single type of mutant opsin is 

expressed in all the cones that would have been L or M in a normal 

eye. In these subjects, rods and short-wavelength (S) cones are the 

only photoreceptors expressing normal photopigments. These 

individuals offer the opportunity to directly evaluate the effect of 

different OPN1LW and OPN1MW mutations. These mutations can be 

placed into one of three categories: (1) mutations that produced 

random nonhomologous missense substitutions at single amino acid 

positions1,3,12,16; (2) partial or complete deletion of an exon15,23; and 

(3) a recently identified category involving intermixing of ancestral 

OPN1LW and OPN1MW genes to produce “L/M interchange” mutations 

with deleterious combinations of nucleotides at normal polymorphic 

positions.7,8,10,13 While at least one L/M interchange mutation has been 

shown to directly cause cone malfunction (Greenwald SH, et al. IOVS 

2012;53:ARVO E-Abstract 4643), it was recently shown that in 

addition to any functional changes in the photopigment caused by the 

mutations, many of the L/M interchange mutations also interfere with 

recognition of exon 3 by the splicing mechanism.24 Some of the 

variants incompletely interfere with splicing, so full-length mRNA is 

produced as well as the inappropriately spliced transcript. Whether 

there are structural differences between the mutation categories, or 

for different mutations within a category, has been unknown. 

Here we used adaptive optics scanning laser ophthalmoscopy 

(AOSLO) and spectral-domain optical coherence tomography (SD-OCT) 

to examine 11 subjects for whom all cones except the S cones express 

one of six mutant opsins. There were differences in the anatomy and 

in the course and severity of vision loss across mutation categories. 

The subjects with L/M interchange mutations reported a later-onset 

progressive loss of visual function, while those with the C203R 

mutation showed a typical congenital BCM phenotype. We observed 

significant disruption of retinal lamination and of cone mosaic 

topography in all subjects, though the degree of disruption was 

generally greater for subjects with L/M interchange mutations than for 
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those with random mutations. These differences provide insight into 

the underlying mechanisms responsible for loss of structure and 

function in these subjects. Furthermore, while the cone loss observed 

may limit success of any efforts to restore L/M cone function using 

gene therapy in any of these subjects, it may be possible to develop 

strategies to slow or halt the degenerative changes in people harboring 

L/M interchange mutations. 

Methods 

Human Subjects 

Written informed consent was obtained after the nature and 

possible consequences of the study were explained. This study 

followed the tenets of the Declaration of Helsinki and was approved by 

all local ethics committees. We examined eight subjects for whom the 

clinical phenotype has been previously described and three new 

subjects (see Table and Supplementary Material, 

http://www.iovs.org/content/53/13/8006/suppl/DC1). Two male 

subjects (JC_0826, 22 years; JC_0847, 23 years) with normal color 

vision were included for comparison, and data from two previously 

published normative databases were used for comparison of the SD-

OCT studies. The data used for comparison against the horizontal line 

scans consisted of 93 subjects with an average age of 25.7 ± 8.2 

years,14 and the data used for comparison against the topographical 

thickness maps consisted of 60 subjects with an average age of 29 ± 

8.42 years.25 Axial length measurements were obtained on all subjects 

(Zeiss IOL Master; Carl Zeiss Meditec, Dublin, CA) in order to 

determine the scale (in microns per pixel) of each retinal image. Prior 

to all retinal imaging, each eye was dilated and cycloplegia was 

induced through topical application of a combination of phenylephrine 

hydrochloride (2.5%) and tropicamide (1%). 
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Subject 

 

Age, 

y 

 

Axial Length, 

mm (OD, OS) 

 

BCVA 

(OD, OS) 

 

L/M Array 

Structure 

 

L/M 

Mutation 

 

Source* 

 

JC_0183 16 25.65, 25.92 
20/80, 
20/80 

0L, 1M C203R† 
Fam. C, 
V:412 

JC_0184 13 24.85, 24.76 
20/120, 

20/120 
0L, 1M C203R† 

Fam. C, 

V:512 

JC_0440 18 25.49, 25.75 
20/80, 
20/80 

0L, 2M C203R† ‡ 
Fam. 1, 
2.115 

JC_0441 18 25.21, 25.12 
20/80, 
20/80 

0L, 2M C203R† ‡ 
Fam. 1, 
2.215 

JC_0355 31 24.54, 24.59 
20/80, 

20/125 
1L, 1M W177R§ ‡ IV:116 

JC_0356 30 25.90, 25.88 
20/125, 

20/125 
1L, 1M W177R§ ‡ IV:216 

JC_0347 32 24.77, 24.25 
20/125, 
20/125 

1L, 0M LVAVA|| This study 

JC_0564 45 27.08, 26.58 
20/100, 
20/100 

0L, 1M LVAVA|| This study 

JC_0118 32 25.83, 26.43 
20/40, 
20/40 

1L, 0M LIAVS|| 
MOL0250 
III:213 

KS_0577 38 23.71, 23.93 
20/70, 
20/100 

0L, 1M LVVVA|| This study 

JC_0430 26 25.40, 25.31 
20/120, 
20/120 

0L, 1M 
Exon 2 
deletion 

Fam. A, 
III:312 

 

Table.  Clinical and Genetic Summary 
Fam., Family. 
* Previous report of genotype and/or phenotype. 
† Substitution of cysteine (C) for arginine (R) at position 203. 
‡ Both genes in the array encode mutation. 
§ Substitution of tryptophan (W) for arginine at position 177. 
|| Sequence of polymorphic amino acids encoded by exon 3 of the L/M gene present in 

the subjects' L/M gene array (153, 171, 174, 178, 180). L, leucine; I, isoleucine; A, 

alanine; V, valine; S, serine. 

Molecular Genetics 

For the three newly recruited subjects, DNA was isolated from 

whole blood, and the opsin genes were amplified and sequenced using 

previously described methods.7 
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Spectral-Domain Optical Coherence Tomography 

Volumetric images of the macula were obtained using high-

definition OCT (Cirrus HD-OCT; Carl Zeiss Meditec). Volumes were 

nominally 6 mm × 6 mm and consisted of 128 B-scans (512 A-

scans/B-scan). Retinal thickness was calculated using the Macular 

Analysis software on the Cirrus (software version 5.0; Carl Zeiss 

Meditec), which is automatically determined via measurement of the 

difference between the inner limiting membrane (ILM) and retinal 

pigment epithelium (RPE) boundaries. High-resolution SD-OCT images 

of the macula were acquired (Bioptigen, Research Triangle Park, NC). 

High-density line scans (1000 A-scans/B-scan, 100 repeated B-scans) 

were acquired through the foveal center, then registered and averaged 

as previously described.26 No transformation (e.g., flattening), 

filtering, or other postprocessing was applied to these images. 

For retinal sublayer analysis, we manually segmented the ILM, 

the outer plexiform layer (OPL), the external limiting membrane 

(ELM), and the RPE on the high-resolution line scans as previously 

described using ImageJ (National Institute of Mental Health, Bethesda, 

MD).14 The ILM–RPE distance provides total retinal thickness, the ILM–

OPL distance provides the inner retinal thickness, and the OPL–ELM 

distance provides the ONL plus Henle fiber layer thickness (ONL+HFL). 

Adaptive Optics Retinal Imaging 

An adaptive optics scanning light ophthalmoscope (AOSLO) was 

used to obtain images of the photoreceptor mosaic at various retinal 

locations. JC_0183, JC_0184, JC_0440, JC_0441, JC_0355, JC_0356, 

JC_0118, and JC_0430 were imaged at the University of Rochester; 

details of this imaging system have been previously published.27 The 

remaining three subjects and the normal controls were imaged at the 

Medical College of Wisconsin, and details of this system have also been 

published.28 The systems derive from the basic design described by 

Gray et al.,29 with the afocal telescopes folded to varying degrees.27 

Both systems utilized a 97-channel deformable mirror (ALPAO, Biviers, 

France) as the wavefront corrector, with a Shack-Hartman wavefront 

sensor used to measure the wavefront. The imaging source was either 
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a 775 nm or a 796 nm super-luminescent diode (Inphenix Inc., 

Livermore, CA), and the light exposure was kept below the safe 

maximum permissible exposure set forth by ANSI.30,31 Images were 

processed to remove distortions induced by the sinusoidal motion of 

the resonant scanner by estimating the distortion from images of a 

calibrated Ronchi ruling and then resampling the images over a grid of 

equally spaced pixels. A separate calibration was done for each 

subject. Images were registered to improve signal-to-noise as 

previously described.32 

The registered images from each subject were combined into a 

single montage (Adobe Photoshop; Adobe Systems, Inc., San Jose, 

CA). This montage was scaled and aligned to the LSO image from the 

HD-OCT, in which a crosshair was placed at the center of the foveal 

pit. The scaling was based on theoretical magnification of each system 

and the alignment performed using blood vessel patterns. The 

locations to be analyzed were determined based on the distance from 

the center of the foveal pit, and the original image comprising that 

portion of the montage was set aside for subsequent density analyses. 

Cone density was measured at selected retinal locations (0.4, 0.8, 1.2, 

1.6, 2.0 mm) using manual identification of cone structures (80 μm × 

80 μm sampling window). For rod analysis, we utilized a smaller 

sampling window (55 μm × 55 μm) than we did for the cone density 

analysis, as the cones in these subjects were more sparse and 

irregularly spaced. Rod density was calculated at various locations 

between 0.5 and 3 mm using a previously described semiautomated 

algorithm in which the user could add/subtract missed or erroneous 

cell identifications.33 

Results 

Different Genotype Classes Associated with Distinct 

Clinical Phenotypes 

The Table provides a summary of subject demographics, with 

the clinical phenotype on 8 of the 11 having been reported previously. 

All four subjects with C203R mutations and the subject with the exon 2 

deletion presented a classical BCM phenotype, with vision based solely 
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on S cones and rods.12,15 The two brothers with W177R mutations 

(JC_0355 and JC_0356) had an onset in the first decade with no 

history of nystagmus; both showed subsequent deterioration of visual 

acuity and color vision, macular pigment epithelial disturbance, and 

severe generalized cone dysfunction on ERG.16 Both had good S-cone 

function with absent L/M cone function on psychophysical testing, 

though the data could not entirely exclude some residual L/M cone 

function in JC_0355.16 

The remaining four subjects (JC_0347, JC_0564, JC_0118, 

KS_0577) had OPN1LW and OPN1MW mutations that fell into the 

newly discovered category involving intermixing of ancestral genes to 

produce L/M interchange mutations with deleterious combinations of 

nucleotides at normal polymorphic positions in exon 3.7,8,10,13,19,24 All 

four of these subjects had a late-onset, progressive phenotype that 

was in stark contrast to that of the subjects with a C203R mutation or 

the exon 2 deletion (see Supplementary Material, 

http://www.iovs.org/content/53/13/8006/suppl/DC1). While the 

subjects with W177R mutations also had a progressive phenotype, it 

was earlier in onset than observed for the L/M interchange mutations 

and resulted in more complete loss of L/M cone function. 

Reduced Retinal Thickness in Subjects with OPN1LW 

and OPN1MW Mutations 

Topographical maps of retinal thickness show variable but 

significant macular thinning in individuals with all three classes of 

mutation (see Supplementary Material and Supplementary Fig. S1, 

http://www.iovs.org/content/53/13/8006/suppl/DC1). The average 

(±SD) central subfield (CSF) thickness (central 1 mm) for the 11 

subjects examined here was 194 ± 34 μm, compared to an average 

(±SD) value for 60 normal subjects from our lab of 266 ± 19 μm; P < 

0.0001, Mann-Whitney test.25 The subjects with random point 

mutations had more normal CSF thickness (216 ± 20 μm) than the 

individuals with L/M interchange mutations (174 ± 28 μm); P = 

0.0381, Mann-Whitney test. In addition, the retinal thinning in the 

subjects with L/M interchange mutations was more widespread (see 
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Supplementary Material and Supplementary Fig. S1, 

http://www.iovs.org/content/53/13/8006/suppl/DC1). 

To investigate the reduction in retinal thickness in more detail, 

we examined the thickness of the inner retina and the ONL+HFL from 

high-resolution horizontal cross sections (Fig. 1), and compared it to 

previously reported normative data.14 Consistent with the 

topographical thickness analysis, we observed that subjects with 

random point mutations had more normal total retinal thickness than 

subjects in the other two genetic categories (Fig. 2A). However, 

subjects with random point mutations had thinning restricted to the 

ONL+HFL, while subjects with L/M interchange mutations (LVAVA, 

LIAVS, and LVVVA) or the exon 2 deletion showed parafoveal thinning 

of the inner retina in addition to reduced ONL+HFL thickness (Figs. 2B, 

B,22C). 

 

Figure 1.   High-resolution SD-OCT images (horizontal line scans) through the 

fovea. Images are labeled with the subject ID and corresponding genotype. An image 

from a normal control (JC_0847) is shown for comparison (lower right). Four layers 

(labeled on the normal control scan) are associated with the hyperreflective 

photoreceptor complex, with layer 1 being attributed to the ELM and layer 2 to the 

ellipsoid portion of the inner segment (ISe). Layers 3 and 4 are thought to originate 

from different aspects of the RPE/photoreceptor interface and RPE, respectively.34 

Variable disruption of the ISe was observed across the 11 subjects. Scale bar is 200 

μm. 
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Figure 2.   Retinal thickness analysis along the horizontal meridian. (A) 

Total retinal thickness, (B) ONL+HFL thickness, (C) inner retinal thickness. 

Solid black line represents mean values for 93 normal controls, with shaded 

region representing ±2 SD from the mean. Filled circles represent averaged 

data for the C203R subjects (JC_0183, JC_0184, JC_0440, JC_0441); filled 

triangles represent averaged data for the W177R subjects (JC_0355, 

JC_0356); filled squares represent averaged data for the LVAVA subjects 

(JC_0347, JC_0564); open circles represent data for the LIAVS subject 

(JC_0118); open triangles represent data for the LVVVA subject (KS_0577); 

and open squares represent data for the subject with the exon 2 deletion 

(JC_0430). All subjects showed significant retinal thinning (total and 
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ONL+HFL), with only the C203R and W177R subjects having normal inner 

retinal thickness. 

Variable Appearance of Outer Photoreceptor Complex 

on SD-OCT in Subjects with OPN1LW and OPN1MW 

Mutations 

In the normal retina, at least four hyperreflective bands 

comprise the outer photoreceptor complex (see JC_0847 in Fig. 1). 

The innermost peak of the outer photoreceptor complex is attributed 

to the ELM, while the second layer is now thought to derive from the 

ellipsoid portion of the inner segment (ISe).34 The third layer is 

attributed to the RPE contact cylinder, and the fourth band is 

attributed to the RPE. As shown in Figure 1, we observed disruption of 

the ISe in all subjects; however, there were differences between the 

mutation classes that paralleled the differences in retinal thinning. Five 

of the six individuals with random point mutations (JC_0183, JC_0184, 

JC_0440, JC_0441, and JC_0355) had a focal disruption of the ISe 

near the foveal center. In contrast, subjects with L/M interchange 

mutations had generally greater disruption of the ISe: JC_0118 

(LIAVS) and KS_0577 (LVVVA) had a large area of ISe loss (as did the 

subject with the exon 2 deletion, JC_0430), and JC_0564 (LVAVA) 

showed diffuse mottling of the ISe. However, these differences did not 

segregate perfectly with genotype category, as JC_0347 (LVAVA) had 

a well-defined focal lesion and JC_0356 (W177R) had diffuse mottling 

of the ISe. 

In the six individuals with the focal ISe disruption, the 

boundaries of the disruption were marked using ImageJ35; the average 

(±SD) width was 99.2 ± 43.5 μm, consistent with previous estimates 

of the size of the S-cone free zone in humans.36–38 

Disrupted Foveal Cone Mosaic in Subjects with OPN1LW 

and OPN1MW Mutations 

Foveal montages created by stitching together multiple 

overlapping images are shown in Figure 3. Differences between the 

genotypic categories parallel those observed in the SD-OCT images. 
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We observed a hyporeflective area at or near the foveal center in the 

six aforementioned subjects with a focal ISe disruption on SD-OCT, 

consistent with this small area lacking healthy, waveguiding cones. A 

sparse population of hyperreflective cones, presumably S cones, 

surrounded this hyporeflective area. The three subjects with a larger 

area of ISe loss on SD-OCT had irregular areas of hyperreflectivity in 

the foveal montages with minimal cone structure present, consistent 

with disruption of L, M, and S foveal cones in their macula. The 

remaining two subjects had more diffuse photoreceptor mosaic 

disruption across the foveal montage with only sporadic 

hyperreflective cones, in keeping with the irregularly disrupted ISe. 

 

Figure 3.   Variable disruption of the central photoreceptor mosaic. AOSLO 

montages of the photoreceptor mosaic are shown, created by stitching together 

multiple overlapping images. The location of the foveal pit is marked with an asterisk, 

and the orientation of the montages is provided at the lower right (S, superior; I, 

inferior; N, nasal; T, temporal). The location and extent of disruption visualized in the 

AOSLO montages was consistent with that seen on the SD-OCT images. Scale bar is 

100 μm. 
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Shown in Figure 4 are plots of the putative S cones observed in 

the foveal montages for the six subjects with a discrete disruption of 

the ISe, compared to a plot of similar data from Curcio et al.38 While 

the analysis may not capture every S cone, it does provide a robust 

way to visualize the relative absence of reflective cones in a particular 

region. The size of the presumed S-cone free zone, determined by 

finding the largest circle that could be placed within the cone mosaic 

without encroaching on any cones, ranged from 50 to 120 μm, with an 

average of 72 μm for the six subjects. This is consistent with previous 

estimates of the size of the S-cone free zone,36–38 providing further 

support that the focal ISe represents complete loss of L/M cone 

structure in the foveola. Interestingly, the center of the presumed S-

cone free zone did not always align to the center of the foveal pit. 

 
Figure 4.   Visualizing the S-cone free zone. Shown are plots of putative S cones 

observed in the foveal montages for the six subjects with a discrete disruption of the 

ISe, compared to a plot of similar data from Curcio et al.38 Filled circles are manually 

identified cones near the foveal center, identified by their bright, Gaussian reflective 

profile. Open squares represent the center of the foveal pit, and it is worth noting that 

the center of the presumed S-cone free zone does not always align to the center of the 

foveal pit. The analysis may not capture every S cone, and thus may not provide 

accurate estimates of S-cone density; however, it does provide a robust way to map 

the relative absence of reflective cones in a particular region. The size of the presumed 

S-cone free zone, determined by finding the largest circle that could be placed within 

the cone mosaic without encroaching on any cones, ranged from 50 to 120 μm, with 

an average of 72 μm for the six subjects. Scale bar is 100 μm. 
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Residual Parafoveal L/M Cone Structure in Subjects 

with OPN1LW and OPN1MW Mutations 

The parafoveal cone mosaic in subjects with OPN1LW and 

OPN1MW mutations is severely disrupted compared to normal (Fig. 5). 

However, there are important differences between the genetic 

categories. Between L/M interchange mutations and those with C203R 

mutations and W177R mutations, the severity of the losses was 

reversed compared to that in the foveal region. While the macula was 

generally thinner and the foveal region more disrupted for the 

interchange mutations as a group, their parafoveal cone numbers were 

better preserved in the parafovea (Fig. 6). The difference was largest 

at 2 mm from the fovea, the most eccentric location measured. We 

were not able to resolve the rod mosaic in all subjects, but 

measurements made outside the central area of ISe disruption (visible 

on OCT) showed rod density consistent with that measured previously 

in normals with the same technique (Fig. 7).39 

 

Figure 5.   Disruption of the parafoveal photoreceptor mosaic. Eccentricity-

matched images from a normal (left) compared to those from four of the mutations 

studied here (middle and right) are shown. The eccentricity of each image is given as 

the distance from the foveal center. In the normal images, cones are the larger 

structures and rods the smaller ones. In the subjects with OPN1LW and OPN1MW 

mutations, there are fewer cones compared to normal and the rods appear larger, but 

they still comprise a contiguous mosaic. Scale bar is 50 μm. 
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Figure 6.   Genotype-dependent differences in retained cone structure. Solid 

gray bars represent the minimum and maximum S-cone density values reported in a 

previous histology study.38 Solid black bars represent averaged data for the C203R 

subjects (JC_0183, JC_0184, JC_0440, JC_0441), while the open bars represent 

averaged data for the W177R subjects (JC_0355, JC_0356). Filled squares represent 

averaged data for the LVAVA subjects (JC_0347, JC_0564); open circles represent 

data for the LIAVS subject (JC_0118); open triangles represent data for the LVVVA 

subject (KS_0577); and the open square represents data for the subject with the exon 

2 deletion (JC_0430). 
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Figure 7.   Parafoveal rod density in subjects with OPN1LW and OPN1MW 

mutations. It was not possible to visualize rods in all subjects or at systematic retinal 

locations, but in all areas assessed (eccentric to the central ISe disruption), we 

observed a contiguous rod mosaic of expected density. Subjects with C203R or W177R 

are plotted as open squares; subjects with L/M interchange mutations are plotted as 

filled circles; and the crosses represent normals measured using AOSLO from a 

previous study.39 The solid line is the average rod density from a previous histology 

report.40 

Assuming a starting cone density equal to that of an average 

normal,40 the residual density for the subjects with the random point 

mutations was 8.5% of normal (SD = 3.0%), consistent with what 

would be expected if they had only S cones remaining.37,38 In contrast, 

the subjects with L/M interchange mutations had residual densities 

that were on average 23% of normal (SD = 10.7%). Factoring in the 

expected population of S cones, we estimate that this corresponds to a 

loss of 86% of the L/M cones (SD = 9%). As normal cone density is 

highly variable, it is impossible to determine the exact degree of cone 

loss (or the degree of cone retention); however, it was clear that the 

retinas harboring C203R or W177R had very few, if any, residual L/M 

cones. Likewise, there was certainly residual L/M cone structure in 
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subjects with L/M interchange mutations, consistent with the residual 

L/M cone function measured with the ERG in KS_0577, JC_0347, and 

JC_0564 (Kuchenbecker J, et al. IOVS 2012; 53:ARVO E-Abstract 

6400). Structure/function agreement was also seen between the two 

subjects with the W77R mutation; JC_0355 had higher cone density 

and less retinal thinning than his brother (JC_0356), consistent with 

his slightly better vision in one eye and better L/M cone function on 

psychophysical testing.16 

Discussion 

Different Retinal Phenotypes in Subjects with OPN1LW 

and OPN1MW Mutations 

While all subjects had disrupted photoreceptor mosaics and 

reduced retinal thickness, there were significant differences between 

the mutation classes. The imaging results provide a number of insights 

into the basis for the observed phenotypic differences between the 

mutation categories. In general, the six subjects with random 

missense mutations (C203R and W177R) had the healthiest-appearing 

retinas on SD-OCT. The small disruption of the ISe that was present 

was shown to correspond to the S-cone free zone,36–38 with the focal 

loss of the ISe being the result of the absence of healthy L or M cones, 

S cones, or rods to provide structure at the foveal center. 

In contrast to the C203R and W177R mutations, the L/M 

interchange mutations (four subjects) and exon 2 deletion (one 

subject) appear to be more disruptive to the overall foveal 

architecture. Only one of five of these subjects (JC_0347, LVAVA) had 

a small focal disruption of the ISe; the others had diffuse mottling of 

the ISe or a much larger absence of the ISe (extending into the 

parafovea). Compared to the subjects with the random point 

mutations, these subjects had greater retinal thinning that involved 

the inner retina as well as the ONL. This suggests that these L/M 

interchange mutations cause, or are associated with, degenerative 

changes that result in damage to neighboring cells (S cones and rods) 

in addition to those expressing mutant L/M opsin. 
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The specificity of the photoreceptor damage to the macular 

region in the subjects with L/M interchange mutations is striking when 

images of the fovea are compared to more peripheral ones. Retinoid 

by-products of the visual cycle and all-trans-retinal (atRAL) are 

particularly toxic.41 It is possible that the cones expressing the L/M 

interchange mutants remain viable through young adulthood but are 

defective in their ability to participate normally in the visual cycle. This 

could lead to a buildup of atRAL or other toxic retinoids, affecting not 

only the cones expressing the mutant opsin, but also parafoveal S 

cones and rods. If these toxic by-products are concentrated in the 

fovea where the cone density is 20 times higher than in the peripheral 

retina,40 it could explain why the collateral damage is higher at the 

central retina compared to more eccentric locations (Fig. 1). 

Implications for Restoration of Visual Function in 

Subjects with OPN1LW and OPN1MW Mutations 

Advances in gene therapy have generated a great deal of 

excitement regarding the restoration of cone function in a variety of 

retinal diseases.42–48 While subjects with L/M interchange mutations 

had the greatest degree of residual parafoveal L/M cone structure, the 

presence of macular atrophy and inner retinal thinning in most of 

these subjects would limit the therapeutic opportunity in these 

individuals at later stages of the disease. However, strategies may be 

developed to slow the degenerative effects of these mutations. In 

contrast, the subjects with C203R or W177R mutations generally had 

more preserved retinal lamination, but adaptive optics imaging 

revealed no evidence for retained L/M cone structure. It is unclear 

whether any cone cell bodies remain, though given that rods appear to 

have expanded to fill in the space occupied by the cones, this would 

imply degeneration of at least the inner and outer segments. 

We did not examine subjects with deletions involving the locus 

control region (LCR), so it remains to be seen how complete absence 

of L/M opsin affects cone photoreceptor integrity compared to the 

expression of mutant opsin. Furthermore, we are unable to say if there 

are structural differences between individuals harboring different L/M 

interchange mutations. Previous evidence showed that an individual 
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with the LIAVA mutant expressed by one of the two genes in the L/M 

array had random, non-waveguiding cells throughout the cone mosaic, 

normal ISe integrity, normal inner retinal thickness, and no change in 

cone structure measured over a span of 8 years.8,18 This suggests that 

the LIAVA mutant may not result in the progressive loss of L/M cones 

(or does so on a much slower time scale), and it will be important to 

longitudinally assess the progressive nature of the various L/M 

interchange mutations to better determine the therapeutic potential in 

these individuals. 

In addition to using the imaging tools described here to 

prioritize potential subjects most suitable for intervention, by 

characterizing the degree of residual cone structure in subjects with 

OPN1LW and OPN1MW mutations, it will be valuable to employ the 

same techniques when evaluating the safety and efficacy of any future 

therapeutic intervention. Such an approach has already been 

demonstrated in patients with retinitis pigmentosa receiving ciliary 

neurotrophic factor,49 where preservation of cone structure was 

observed in the absence of a significant functional improvement in 

vision. It is entirely plausible that structural recovery or preservation 

precedes functional changes; however, this will remain unclear until 

high-resolution imaging metrics become a routine part of the outcome 

measures used in clinical trials. 
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