40 research outputs found

    Positional identification of variants of Adamts16 linked to inherited hypertension

    Get PDF
    A previously reported blood pressure (BP) quantitative trait locus on rat Chromosome 1 was isolated in a short congenic segment spanning 804.6 kb. The 804.6 kb region contained only two genes, LOC306664 and LOC306665. LOC306664 is predicted to translate into A Disintegrin-like and Metalloproteinase with Thrombospondin Motifs-16 (Adamts16). LOC306665 is a novel gene. All predicted exons of both LOC306664 and LOC306665 were sequenced. Non-synonymous variants were identified in only one of these genes, LOC306664. These variants were naturally existing polymorphisms among inbred, outbred and wild rats. The full-length rat transcript of Adamts16 was detected in multiple tissues. Similar to ADAMTS16 in humans, expression of Adamts16 was prominent in the kidney. Renal transcriptome analysis suggested that a network of genes related to BP was differential between congenic and S rats. These genes were also differentially expressed between kidney cell lines with or without knock-down of Adamts16. Adamts16 is conserved between rats and humans. It is a candidate gene within the homologous region on human Chromosome 5, which is linked to systolic and diastolic BP in the Quebec Family Study. Multiple variants, including an Ala to Pro variant in codon 90 (rs2086310) of human ADAMTS16, were associated with human resting systolic BP (SBP). Replication study in GenNet confirmed the association of two variants of ADAMTS16 with SBP, including rs2086310. Overall, our report represents a high resolution positional cloning and translational study for Adamts16 as a candidate gene controlling BP

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Evaluation of Legume Mixtures for Hay Plantings 1

    No full text
    corecore