52 research outputs found
Regulation of pathogenic IL-17 responses in collagen-induced arthritis: roles of endogenous interferon-gamma and IL-4
Abstract
Introduction
Interleukin (IL)-17 plays an important role in the pathogenesis of rheumatoid arthritis and the mouse model collagen-induced arthritis (CIA). Interferon(IFN)-γ and IL-4 have been shown to suppress Th17 development in vitro, but their potential immunoregulatory roles in vivo are uncertain. The goals of this study were to determine the relationship between Th17 responses and disease severity in CIA and to assess regulation of IL-17 by endogenous IFN-γ and IL-4.
Methods
DBA1/LacJ mice were immunized with type II collagen in complete Freund's adjuvant (CFA) to induce arthritis, and treated with neutralizing antibody to IFN-γ and/or IL-4. Systemic IL-17, IFN-γ, and IL-4 were measured in serum. At the peak of disease, cytokine production was measured by ELISA of supernatants from spleen, lymph node and paw cultures. Paws were also scored for histologic severity of arthritis.
Results
Joint inflammation was associated with a higher ratio of systemic IL-17/IFN-γ. Neutralization of IFN-γ accelerated the course of CIA and was associated with increased IL-17 levels in the serum and joints. The IFN-γ/IL-4/IL-17 responses in the lymphoid organ were distinct from such responses in the joints. Neutralization of IL-4 led to increased arthritis only in the absence of IFN-γ and was associated with increased bone and cartilage damage without an increase in the levels of IL-17.
Conclusions
IL-4 and IFN-γ both play protective roles in CIA, but through different mechanisms. Our data suggests that the absolute level of IL-17 is not the only determinant of joint inflammation. Instead, the balance of Th1, Th2 and Th17 cytokines control the immune events leading to joint inflammation.http://deepblue.lib.umich.edu/bitstream/2027.42/112787/1/13075_2009_Article_2675.pd
Uncoverings: The Research Papers of the American Quilt Study Group, Volume 38 (2017)
Foreword by Lynne Zacek Bassett
Old Quilt Brought to America by Dana Fobes Bowne
The Cushman Quilt Tops: A Tale of North and South by Rachel May and Linda Welters
Louisiana Acadian Cotonnade Quilts: Preserving the Weaving Heritage of a People by Dale Drake
Baltimore Album Quilts: New Research by Deborah Cooney and Ronda Harrell McAllen
Whence Garlands, Swags, Bowknots, and Baskets? Four Neoclassical Design Motifs Found in American Quilts by Anita Loscalzo
The Mystery of the Harlequin Star Quilts: Finding and Naming a Previously Unidentified Regional Design by Kathleen L. Moore
Contributors
Inde
Characterisation of the bacterial and fungal communities associated with different lesion sizes of Dark Spot Syndrome occurring in the Coral Stephanocoenia intersepta
The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS) afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi) associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H), those in advance of the lesion interface (apparently healthy AH), and three sizes of disease lesions (small, medium, and large) varied significantly (ANOSIM R = 0.052 p,0.001), apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237), Acinetobacter (KC190251), Parvularculaceae (KC19027), and Oscillatoria (KC190271). Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals’ symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name), the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in Black Band Disease, another widespread coral disease
Metabolomic analysis of insulin resistance across different mouse strains and diets
Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity
BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis
Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes
The cost-effectiveness of providing antenatal lifestyle advice for women who are overweight or obese: the LIMIT randomised trial
Background: Overweight and obesity during pregnancy is common, although robust evidence about the economic implications of providing an antenatal dietary and lifestyle intervention for women who are overweight or obese is lacking. We conducted a health economic evaluation in parallel with the LIMIT randomised trial. Women with a singleton pregnancy, between 10+0-20+0weeks, and BMI ≥ 25 kg/m2were randomised to Lifestyle Advice (a comprehensive antenatal dietary and lifestyle intervention) or Standard Care. The economic evaluation took the perspective of the health care system and its patients, and compared costs encountered from the additional use of resources from time of randomisation until six weeks postpartum. Increments in health outcomes for both the woman and infant were considered in the cost-effectiveness analysis. Mean costs and effects in the treatment groups allocated at randomisation were compared, and incremental cost effectiveness ratios (ICERs) and confidence intervals (95%) calculated. Bootstrapping was used to confirm the estimated confidence intervals, and to generate acceptability curves representing the probability of the intervention being cost-effective at alternative monetary equivalent values for the outcomes avoiding high infant birth weight, and respiratory distress syndrome. Analyses utilised intention to treat principles. Results: Overall, the increase in mean costs associated with providing the intervention was offset by savings associated with improved immediate neonatal outcomes, rendering the intervention cost neutral (Lifestyle Advice Group 11261.19±14573.97 versus Standard Care Group 11306.70±14562.02; p=0.094). Using a monetary value of 45,000. Conclusions: Providing an antenatal dietary and lifestyle intervention for pregnant women who are overweight or obese is not associated with increased costs or cost savings, but is associated with a high probability of cost effectiveness. Ongoing participant follow-up into childhood is required to determine the medium to long-term impact of the observed, short-term endpoints, to more accurately estimate the value of the intervention on risk of obesity, and associated costs and health outcomes
Recommended from our members
Publisher Correction: Genetic tool development in marine protists: emerging model organisms for experimental cell biology.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
Recommended from our members
Genetic tool development in marine protists: emerging model organisms for experimental cell biology
Abstract: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways
Genetic tool development in marine protists: emerging model organisms for experimental cell biology
Abstract: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways
- …