1,154 research outputs found

    Discovery of an anomalous Sub Giant Branch in the Color Magnitude Diagram of omega Centauri

    Full text link
    Using deep high-resolution multi-band images taken with the Very Large Telescope and the Hubble Space Telescope, we discovered a new anomalous sequence in the Color Magnitude Diagram of omega Cen. This feature appears as a narrow, well-defined Sub Giant Branch (SGB-a), which merges into the Main Sequence of the dominant cluster population at a magnitude significantly fainter than the cluster Turn-Off (TO). The simplest hypothesis assumes that the new feature is the extension of the anomalous Red Giant Branch (RGB-a) metal-rich population discovered by Lee et al. (1999) and Pancino et al. (2000). However, under this assumption the interpretation of the SGB-a does not easily fit into the context of a self-enrichment scenario within omega Cen. In fact, its TO magnitude, shape and extension are not compatible with a young, metal-rich population, as required by the self-enrichment process. The TO level of the SGB-a suggests indeed an age as old as the main cluster population, further supporting the extra-cluster origin of the most metal rich stars, as suggested by Ferraro, Bellazzini & Pancino (2002). Only accurate measurements of radial velocities and metal abundances for a representative sample of stars will firmly establish whether or not the SGB-a is actually related to the RGB-a and will finally shed light on the origin of the metal rich population of omega Cen.Comment: ApJL, in pres

    A Comparison of Deep HST Luminosity Functions of Four Globular Clusters

    Get PDF
    From deep color-magnitude arrays made from V and I images taken with the Hubble Space Telescope's WFPC2 camera we have determined luminosity functions (LFs) down to a level that corresponds to about 0.13 solar masses, for the low-metal-abundance globular clusters M15, M30, M92, and NGC 6397. Because of the similarity of the metallicities of these clusters, differences in their luminosity functions directly trace differences in their mass functions. The LFs of M15, M30, and M92 agree closely over the entire observed range, whereas that of NGC 6397 drops away sharply at the faintest magnitudes. We suggest that the deficiency of low-mass stars in NGC 6397 is due to tidal shocks, to ejection through internal relaxation, or to a combination of the two. With the presently available mass-luminosity relations, we find that even in M15, M30, and M92 the mass functions probably do not rise so fast as to make the low-mass end dominant

    Isolation and characterization of the human uracil DNA glycosylase gene.

    Full text link

    New Cataclysmic Variables and other Exotic Binaries in the Globular Cluster 47 Tucanae

    Full text link
    We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster center than the main sequence turnoff stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of approx. 1.4 M_sun. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colors. For one of them we present very strong evidence for being an ablated companion. The other three could be CO- or He-WDs.Comment: Published on MNRAS. 31 Pages, 23 Figures, 5 Tables. Minor changes with respect to previous arXiv versio

    Discovery of near-ultraviolet counterparts to millisecond pulsars in the globular cluster 47 Tucanae

    Get PDF
    We report the discovery of the likely white dwarf companions to radio millisecond pulsars 47 Tuc Q and 47 Tuc S in the globular cluster 47 Tucanae. These blue stars were found in near-ultraviolet images from the Hubble Space Telescope for which we derived accurate absolute astrometry, and are located at positions consistent with the radio coordinates to within 0.016 arcsec (0.2sigma). We present near-ultraviolet and optical colours for the previously identified companion to millisecond pulsar 47 Tuc U, and we unambiguously confirm the tentative prior identifications of the optical counterparts to 47 Tuc T and 47 Tuc Y. For the latter, we present its radio-timing solution for the first time. We find that all five near-ultraviolet counterparts have U300-B390 colours that are consistent with He white dwarf cooling models for masses ~0.16-0.3 Msun and cooling ages within ~0.1-6 Gyr. The Ha-R625 colours of 47 Tuc U and 47 Tuc T indicate the presence of a strong Ha absorption line, as expected for white dwarfs with an H envelope.Comment: Accepted for publication on MNRAS. 12 pages, 5 figures, 3 table

    The Mid-IR and X-ray Selected QSO Luminosity Function

    Full text link
    We present the J-band luminosity function of 1838 mid-infrared and X-ray selected AGNs in the redshift range 0<z<5.85. These luminosity functions are constructed by combining the deep multi-wavelength broad-band observations from the UV to the mid-IR of the NDWFS Bootes field with the X-ray observations of the XBootes survey and the spectroscopic observations of the same field by AGES. Our sample is primarily composed of IRAC-selected AGNs, targeted using modifications of the Stern et al.(2005) criteria, complemented by MIPS 24 microns and X-ray selected AGNs to alleviate the biases of IRAC mid-IR selection against z~4.5 quasars and AGNs faint with respect to their hosts. This sample provides an accurate link between low and high redshift AGN luminosity functions and does not suffer from the usual incompleteness of optical samples at z~3. We find that the space density of the brightest quasars strongly decreases from z=3 to z=0, while the space density of faint quasars is at least flat, and possibly increasing, over the same redshift range. At z>3 we observe a decrease in the space density of quasars of all brightnesses. We model the luminosity function by a double power-law and find that its evolution cannot be described by either pure luminosity or pure density evolution, but must be a combination of both. Our best-fit model has bright and faint power-law indices consistent with the low redshift measurements based on the 2QZ and 2SLAQ surveys and it generally agrees with the number of bright quasars predicted by other LFs at all redshifts. If we construct the QSO luminosity function using only the IRAC-selected AGNs, we find that the biases inherent to this selection method significantly modify the behavior of phi*(z) only for z<1 and have no significant impact upon the characteristic magnitude M*_J(z).Comment: Corrected minor typo in equations (4) and (6). Accepted for publication in The Astrophysical Journal. 56 pages + 6 tables + 16 figure

    Ground and space-based study of two globular cluster CVs: M22 CV1 and M5 V101

    Get PDF
    As a class of compact binaries with large binding energy, cataclysmic variables formed through close encounters play an important role in the dynamical evolution of globular clusters. As part of a systematic search for CVs undergoing dwarf nova eruptions in globular clusters, our 2004 monitoring programme of M22 detected an outburst of the dwarf nova candidate CV1 during May. We implement the ISIS image subtraction routine to obtain a light curve for an outburst of CV1. We present the outburst light curve as well as HST/WFPC2 photometry in the V, U and near ultra-violet (nUV) bands and a Chandra/ACIS-S spectrum of the object. Our results confirm the DN nature of the outburst and the CV status of the object. We also present the results of a ground-based study of another globular cluster CV, M5 V101 - including quiescent medium-resolution WHT/ISIS spectroscopy in the B and R bands, displaying prominent Balmer and HeI emission, and R-band photometry.Comment: 12 pages, 11 figures. Accepted for publication in MNRA
    • …
    corecore