2,650 research outputs found
A questionnaire to identify patellofemoral pain in the community: an exploration of measurement properties
Background
Community-based studies of patellofemoral pain (PFP) need a questionnaire tool that discriminates between those with and those without the condition. To overcome these issues, we have designed a self-report questionnaire which aims to identify people with PFP in the community.
Methods
Study designs: comparative study and cross-sectional study.
Study population: comparative study: PFP patients, soft-tissue injury patients and adults without knee problems. Cross-sectional study: adults attending a science festival.
Intervention: comparative study participants completed the questionnaire at baseline and two weeks later. Cross-sectional study participants completed the questionnaire once.
The optimal scoring system and threshold was explored using receiver operating characteristic curves, test-retest reliability using Cohen’s kappa and measurement error using Bland-Altman plots and standard error of measurement. Known-group validity was explored by comparing PFP prevalence between genders and age groups.
Results
Eighty-four participants were recruited to the comparative study. The receiver operating characteristic curves suggested limiting the questionnaire to the clinical features and knee pain map sections (AUC 0.97 95 % CI 0.94 to 1.00). This combination had high sensitivity and specificity (over 90 %). Measurement error was less than the mean difference between the groups. Test–retest reliability estimates suggest good agreement (N = 51, k = 0.74, 95 % CI 0.52–0.91). The cross-sectional study (N = 110) showed expected differences between genders and age groups but these were not statistically significant.
Conclusion
A shortened version of the questionnaire, based on clinical features and a knee pain map, has good measurement properties. Further work is needed to validate the questionnaire in community samples
Municipal water quantities and health in Nunavut households: an exploratory case study in Coral Harbour, Nunavut, Canada
Background: Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives: Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods: Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results: Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions: The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households, however, are accessing water in quantities more typically seen in water insecure developing countries. We recommend several practical interventions and revisions to municipal water supply systems
Entanglement-free Heisenberg-limited phase estimation
Measurement underpins all quantitative science. A key example is the
measurement of optical phase, used in length metrology and many other
applications. Advances in precision measurement have consistently led to
important scientific discoveries. At the fundamental level, measurement
precision is limited by the number N of quantum resources (such as photons)
that are used. Standard measurement schemes, using each resource independently,
lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard
quantum limit. However, it has long been conjectured that it should be possible
to achieve a precision limited only by the Heisenberg uncertainty principle,
dramatically improving the scaling to 1/N. It is commonly thought that
achieving this improvement requires the use of exotic quantum entangled states,
such as the NOON state. These states are extremely difficult to generate.
Measurement schemes with counted photons or ions have been performed with N <=
6, but few have surpassed the standard quantum limit and none have shown
Heisenberg-limited scaling. Here we demonstrate experimentally a
Heisenberg-limited phase estimation procedure. We replace entangled input
states with multiple applications of the phase shift on unentangled
single-photon states. We generalize Kitaev's phase estimation algorithm using
adaptive measurement theory to achieve a standard deviation scaling at the
Heisenberg limit. For the largest number of resources used (N = 378), we
estimate an unknown phase with a variance more than 10 dB below the standard
quantum limit; achieving this variance would require more than 4,000 resources
using standard interferometry. Our results represent a drastic reduction in the
complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe
In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Postcopulatory sexual selection
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process
for the ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS)BACKGROUND Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. METHODS Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. RESULTS The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag ₄₀ and 35% had autocorrelation through to lag ₄₀; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. CONCLUSIONS The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.John L Moran, Patricia J Solomo
- …
