69 research outputs found

    A Bayesian approach for energy-based estimation of acoustic aberrations in high intensity focused ultrasound treatment

    Get PDF
    High intensity focused ultrasound is a non-invasive method for treatment of diseased tissue that uses a beam of ultrasound to generate heat within a small volume. A common challenge in application of this technique is that heterogeneity of the biological medium can defocus the ultrasound beam. Here we reduce the problem of refocusing the beam to the inverse problem of estimating the acoustic aberration due to the biological tissue from acoustic radiative force imaging data. We solve this inverse problem using a Bayesian framework with a hierarchical prior and solve the inverse problem using a Metropolis-within-Gibbs algorithm. The framework is tested using both synthetic and experimental datasets. We demonstrate that our approach has the ability to estimate the aberrations using small datasets, as little as 32 sonication tests, which can lead to significant speedup in the treatment process. Furthermore, our approach is compatible with a wide range of sonication tests and can be applied to other energy-based measurement techniques

    A Bayesian Approach for Energy-Based Estimation of Acoustic Aberrations in High Intensity Focused Ultrasound Treatment

    Get PDF
    High intensity focused ultrasound is a non-invasive method for treatment of diseased tissue that uses a beam of ultrasound to generate heat within a small volume. A common challenge in application of this technique is that heterogeneity of the biological medium can defocus the ultrasound beam. Here we reduce the problem of refocusing the beam to the inverse problem of estimating the acoustic aberration due to the biological tissue from acoustic radiative force imaging data. We solve this inverse problem using a Bayesian framework with a hierarchical prior and solve the inverse problem using a Metropolis-within-Gibbs algorithm. The framework is tested using both synthetic and experimental datasets. We demonstrate that our approach has the ability to estimate the aberrations using small datasets, as little as 32 sonication tests, which can lead to significant speedup in the treatment process. Furthermore, our approach is compatible with a wide range of sonication tests and can be applied to other energy-based measurement techniques

    Design of an ultrasound-guided transesophageal High Intensity Focused Ultrasound applicator for atrial fibrillation treatment

    No full text
    La fibrillation atriale (FA) est l’arythmie cardiaque la plus fréquente. Elle touche près de 750 000 personnes en France. La technique de traitement la plus courante est l’ablation intracardiaque par radiofréquence (RF). Son principe consiste à isoler électriquement les veines pulmonaires du reste de l’oreillette. Cependant cette technique est invasive et a une efficacité limitée. Les Ultrasons Focalisés de Haute Intensité (HIFU) permettent de léser à distance de façon précise les tissus biologiques. Un traitement de la FA par HIFU transoesophagiens aurait l’avantage d’être mini-invasif et plus efficace qu’un traitement par RF intracardiaque de par la possibilité de générer des lésions transmurales sans nécessiter de contact entre la sonde et la zone à traiter. Un applicateur HIFU transoesophagien à guidage échographique intégré a donc été développé pour le traitement de la FA. Le transducteur peut focaliser le faisceau ultrasonore de 17 mm à 55 mm de profondeur avec une intensité acoustique maximale à sa surface de 12 W•cm-2. Une procédure de traitement HIFU préservant les tissus adjacents a été simulée numériquement sur un modèle anatomique réaliste. Des lésions HIFU transoesophagiennes ont été obtenues ex vivo dans du myocarde dans des conditions anatomiques et physiologiques proches de l’in vivo. Des essais préliminaires d’élastographie par ondes de cisaillement ont permis d’évaluer la faisabilité d’un contrôle de la formation des lésions à l’aide du transducteur d’imagerie intégré. Une première série d’expérimentations in vivo sur le modèle porcin a finalement permis de valider la procédure de traitement et d’induire des dommages biologiques dans le tissu cardiaqueAtrial fibrillation (AF) is the most frequent cardiac arrhythmia. This pathology affects more than 750,000 persons in France. Radiofrequency (RF) endocardial ablation is performed to treat this disease and involves the generation of transmural thermal lesions, to isolate electrically the pulmonary veins (PV) from the left atrium. The technique is, however, invasive and has a limited efficiency, especially for ensuring transmurality which requires a perfect contact between the RF probe and cardiac tissues. High Intensity Focused Ultrasound (HIFU) allows the creation of precise thermal lesions, deep within biological tissues. A transesophageal HIFU approach could provide a minimally-invasive alternative for AF treatment, since deep transmural lesions could be generated at distance from the HIFU probe. In this work, an ultrasound-guided transesophageal applicator has been developed for AF treatment. The HIFU transducer, embedding a transesophageal echocardiography (TEE) probe, can focus the acoustic beam from 17 to 55 mm axially and generate a surface acoustic intensity up to 12 W•cm-2. A complex treatment plan, the HIFU Mini-Maze (HIFUMM), was successfully simulated on a realistic anatomical human model. Transesophageal HIFU lesions were induced experimentally in static myocardium, under ex vivo configurations reflecting an increasing complexity in anatomical and physiological conditions. Investigations conducted on shear wave elastography confirmed the feasibility of using TEE to control the formation of HIFU lesions. Finally, in vivo experiments in a porcine model allowed validating the treatment procedure by inducing biological damages in beating hear

    Développement d'un applicateur transoesophagien à Ultrasons Focalisés de Haute Intensité à guidage échographique intégré pour le traitement de la fibrillation atriale

    No full text
    Atrial fibrillation (AF) is the most frequent cardiac arrhythmia. This pathology affects more than 750,000 persons in France. Radiofrequency (RF) endocardial ablation is performed to treat this disease and involves the generation of transmural thermal lesions, to isolate electrically the pulmonary veins (PV) from the left atrium. The technique is, however, invasive and has a limited efficiency, especially for ensuring transmurality which requires a perfect contact between the RF probe and cardiac tissues. High Intensity Focused Ultrasound (HIFU) allows the creation of precise thermal lesions, deep within biological tissues. A transesophageal HIFU approach could provide a minimally-invasive alternative for AF treatment, since deep transmural lesions could be generated at distance from the HIFU probe. In this work, an ultrasound-guided transesophageal applicator has been developed for AF treatment. The HIFU transducer, embedding a transesophageal echocardiography (TEE) probe, can focus the acoustic beam from 17 to 55 mm axially and generate a surface acoustic intensity up to 12 W•cm-2. A complex treatment plan, the HIFU Mini-Maze (HIFUMM), was successfully simulated on a realistic anatomical human model. Transesophageal HIFU lesions were induced experimentally in static myocardium, under ex vivo configurations reflecting an increasing complexity in anatomical and physiological conditions. Investigations conducted on shear wave elastography confirmed the feasibility of using TEE to control the formation of HIFU lesions. Finally, in vivo experiments in a porcine model allowed validating the treatment procedure by inducing biological damages in beating heartLa fibrillation atriale (FA) est l’arythmie cardiaque la plus fréquente. Elle touche près de 750 000 personnes en France. La technique de traitement la plus courante est l’ablation intracardiaque par radiofréquence (RF). Son principe consiste à isoler électriquement les veines pulmonaires du reste de l’oreillette. Cependant cette technique est invasive et a une efficacité limitée. Les Ultrasons Focalisés de Haute Intensité (HIFU) permettent de léser à distance de façon précise les tissus biologiques. Un traitement de la FA par HIFU transoesophagiens aurait l’avantage d’être mini-invasif et plus efficace qu’un traitement par RF intracardiaque de par la possibilité de générer des lésions transmurales sans nécessiter de contact entre la sonde et la zone à traiter. Un applicateur HIFU transoesophagien à guidage échographique intégré a donc été développé pour le traitement de la FA. Le transducteur peut focaliser le faisceau ultrasonore de 17 mm à 55 mm de profondeur avec une intensité acoustique maximale à sa surface de 12 W•cm-2. Une procédure de traitement HIFU préservant les tissus adjacents a été simulée numériquement sur un modèle anatomique réaliste. Des lésions HIFU transoesophagiennes ont été obtenues ex vivo dans du myocarde dans des conditions anatomiques et physiologiques proches de l’in vivo. Des essais préliminaires d’élastographie par ondes de cisaillement ont permis d’évaluer la faisabilité d’un contrôle de la formation des lésions à l’aide du transducteur d’imagerie intégré. Une première série d’expérimentations in vivo sur le modèle porcin a finalement permis de valider la procédure de traitement et d’induire des dommages biologiques dans le tissu cardiaqu
    • …
    corecore