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Abstract. High intensity focused ultrasound is a non-invasive method for treatment
of diseased tissue that uses a beam of ultrasound to generate heat within a small vol-
ume. A common challenge in application of this technique is that heterogeneity of the
biological medium can defocus the ultrasound beam. Here we reduce the problem of
refocusing the beam to the inverse problem of estimating the acoustic aberration due to
the biological tissue from acoustic radiative force imaging data. We solve this inverse
problem using a Bayesian framework with a hierarchical prior and solve the inverse
problem using a Metropolis-within-Gibbs algorithm. The framework is tested using
both synthetic and experimental datasets. We demonstrate that our approach has the
ability to estimate the aberrations using small datasets, as little as 32 sonication tests,
which can lead to significant speedup in the treatment process. Furthermore, our ap-
proach is compatible with a wide range of sonication tests and can be applied to other
energy-based measurement techniques.
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1 Introduction

High intensity focused ultrasound (HIFU) treatment is a non-invasive method for treat-
ment of diseased tissue. The treatment uses a focused beam of ultrasound waves that
converge onto a focal point. The resulting absorption of ultrasound generates heat which
in turn can ablate the targeted tissue. The method has shown clinical success in treat-
ment of uterine fibroids [15, 20, 43], prostate cancer [11], liver tumours [21, 48], brain
disorders [14, 22, 28] and other medical conditions [27]. However, application of this
method for treatment of brain tissue remains a challenge. Strong aberrations due to the
skull bone, specifically the shift in the phase of the acoustic signal, defocus the beam and
result in a loss of acoustic pressure. This problem can be resolved by estimating the intro-
duced acoustic aberrations. If the estimate is accurate enough then one can compensate
the phase of the acoustic signals (at the transducer) and refocus the beam behind the skull
bone.

One approach for estimating the aberrations is to use Magnetic Resonance (MR) imag-
ing [18] or Computed Tomography (CT) [3,33] to obtain a three dimensional model of the
patient’s skull and use this information in a computer model for acoustic wave propaga-
tion to estimate the tissue aberration and the phase shift needed to refocus the beam.
However, this approach is limited by both the computational cost of the model and the
accuracy of the estimates for the properties of the tissues.

An alternative approach is the so called energy-based focusing techniques of [17,26].
Here, Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) is used to ob-
tain measurements of the intensity of the acoustic field at the focal point. MR-ARFI uses
low-duty cycle HIFU pulses that generate tissue displacement in the order of microns
at the focal point of the beam. The small displacement is measured with MRI using
gradient pulses that encode the tissue displacement in the phase information of an MR
image [8, 35]. Using ARFI, displacement maps are generated and can be used to verify
and correct the degree of focusing of HIFU beam [34]. The energy-based focusing tech-
niques in [17,26] use a dataset of displacement maps that is generated by imposing spe-
cific excitation patterns at the ultrasound transducer. Columns of a Hadamard matrix are
used in [17] while [25] uses Zernink polynomials. Afterwards, the resulting displacement
maps are used to estimate both the acoustic field of the transducer and the aberrations
induced by the ultrasound propagation medium. The main drawback of this technique is
the need for a large number of sonication tests which requires a long acquisition time for
the MRI data. Recently, it was argued in [30] that energy-based techniques can be cast as
a penalized least-squares problem which enables one to use more general excitation pat-
terns. They showed that using randomized calibration sequences can reduce the number
of sonication tests significantly.

In this article, a far-field approximation to the three dimensional acoustic equation
is used as a forward model that can be evaluated efficiently. The effect of the tissue is
modelled as an infinitely thin aberrator in front of the transducer, following [30]. These
assumptions allow us to use a fast forward map that can be evaluated many times for
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the purposes of estimating the aberrations and quantifying uncertainties. Furthermore,
the estimation of aberrations can be written in the form of a phase retrieval problem
where the function is typically recovered from the amplitude of its Fourier transform
[16,31,32,42]; thus, the methodology of this article is also applicable to phase retrieval
problems in other applications.

The goal of this article is to demonstrate the feasibility of using a new Bayesian
method to estimate the acoustic aberrations with a small number of sonication tests. The
central idea is to cast the problem within the framework of Bayesian inverse problems.
The Bayesian perspective provides a general framework for estimation of parameters that
model the aberrations from a finite set of measurements. Appropriate models are chosen
to explain the data, the measurement noise and prior knowledge of the parameters. Af-
terwards, an entire probability distribution on the parameters is obtained rather than a
single point estimator. The Bayesian formulation can also be viewed as a generalization
of the least-squares formulation of [30] (minimizers of penalized least-squares functionals
are often equivalent to maximizers of the density of an underlying posterior distribution
when the parameters are finite dimensional [23]). This allows for stable estimation of the
aberrations with very noisy data and few sonication tests.

Furthermore, the Bayesian approach provides an estimate of the parameters as well as
the associated uncertainties in that estimate. An introduction to the Bayesian perspective
for solution of inverse problems and many of the techniques that are used in this article
can be found in the monographs [6,23,45] and the article [44] as well as the references
therein. The Bayesian approach to inverse problems has been successfully applied in
various areas of medical imaging such as electrical impedance tomography [24], optical
diffuse tomography [2] and dynamic X-ray tomography [36] as well as other fields such
as astronomy [13,39] and geoscience [12,19,45].

Our Bayesian approach consists of constructing a hierarchical smoothness prior for
the aberration that reflects the prior knowledge that the aberration parameters tend to
change smoothly between nearby elements on the transducer; that is, the properties of
the tissue do not change dramatically between elements. Combining this prior knowl-
edge with the forward model and the data, results in a posterior distribution which is
viewed as the solution to the inverse problem. A Metropolis-within-Gibbs (MwG) sam-
pler [29,40] is used for exploring this distribution and obtaining several statistics such
as the posterior mean and standard deviation of the aberrations as well as independent
samples.

The remainder of this article is organized as follows. Section 2 is dedicated to the
mathematical theory and the setup of the problem. A brief introduction to the far-field
approximation of the acoustic equation is presented which is followed by the setup of the
forward model that explains the MR-ARFI data. Next, the formulation of the Bayesian in-
verse problem is discussed where the likelihood and prior distributions are constructed.
At the end of this section a MwG algorithm for sampling the posterior distribution is pro-
posed. Section 3 concerns the setup of the test for synthetic and experimental conditions
that were performed to verify the method. The results are then presented in Section 4
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which is followed by a discussion of the mathematical framework and the results in Sec-
tion 5.

1.1 Notation

Throughout this article lower case and Greek bold letters denote vectors and upper case
bold letters denote matrices. Given a matrix A we use A* to denote its adjoint. Finally,
given m € RN and a positive definite matrix X € RN*N we use N (m,X) to denote a
Gaussian random variable with mean m and covariance matrix X.

2 Mathematical background and theory

2.1 Forward problem

A far-field approximation to the acoustic field of a single piezoelectric ultrasound emitter
is obtained under the assumption that each ultrasound emitter is infinitesimally small
and emits a radially symmetric acoustic wave of amplitude pg [Pa] and frequency w [Hz].
Then the pressure field p(x) [Pa] at a location x [m], generated by a piezoelectric emitter
at location e [m] (see Fig. 1) is given by

p(x;e)=zf(x;e), where z=ppexp(iwt) and f(x;e):ﬁexp<icg|x—e|>.(2.1)
- 0
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Figure 1: (a) Schematics of the high intensity focused ultrasound setup. The transducer is submerged in
an oil tank and generates an acoustic field which is directed at a phantom. The resulting displacements are
measured using an MR-coil inside an MRI machine. (b) The coordinate system of the transducer that is used
in Egs. (2.1)-(2.3) for computing the acoustic field.
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Here ¢g [m/s] is the speed of sound and f(x;e) is referred to as the free-field of the emitter
[30]. Interaction of the acoustic waves with the tissue results in dissipation of energy and
a shift in the phase as a result of friction (micro-scale displacements) and scattering [46].
The acoustic pressure f(x) in the presence of the tissue can be modelled as

p(x;e)=up(x;e), where u=_{_exp(ipt). (2.2)

Here, { is the amplitude coefficient related to the attenuation of the medium and ¢ is the
shift in phase.

A physical transducer can be a phase array consisting of a large number of piezo-
electric emitters. Let N denote the number of physical piezoelectric emitters (N =256 in
the case of the Philips Sonalleve V1 system (Philips, Healthcare, Vantaa, Finland) that is
used in the experiments of Section 3.2) and let z € CN denote the sonication pattern at
the transducer which is the vector containing the phase and amplitude of the acoustic
waves transmitted by each emitter. Also, ac CN is defined as the vector of aberrations
pertaining to each element, obtained by concatenating the u variable of (2.2) for all ele-
ments on the transducer. Finally, define the field of view to be the displacement data of
a region of v/M x /M voxels around the focal point which is extracted from MR-ARFI
images (v/M =19 in Section 4 for the synthetic test and v/M =7 for the physical experi-
ment). Let p € CM denote the measured values of the pressure at each voxel in presence
of aberrations concatenated into a long vector. Then

p=Fdiag(z)a, (2.3)

where diag(z) is the diagonal matrix created from the entries of Z and FECM*N is referred
to as the free-field matrix [30] which is the mapping of the pressure in the absence of
aberrations. The i,j entry of F is given by the value of the free-field function f(x;;e;)
in (2.1) of a piezoelectric element at location e; evaluated at a voxel centered at x;, in
the absence of the aberrator. Thus, F depends solely on the geometry of the transducer
and the location of the voxels, and z are specified by the user through the design of the
sonication patterns and so both F and z are known a priori.

The above model for the pressure field p relies on the assumption that tissue aberra-
tions can be modelled as an infinitesimally thin aberrator in front of the transducer [30].
The measured displacement in MR-ARFI images is proportional to the total intensity of
the signal which is equal to the square of the modulus of pressure [35]. The constant
of proportionality is generally unknown but it can be estimated in a calibration step as
discussed in Section 3.2.1. Throughout the remainder of this article the constant of pro-
portionality is accounted for in the free-field matrix. To this end, let d € RM be the vector
of displacements at each voxel. Then

d=diag(p)p”, (2.4)

where p* denotes the element wise complex conjugate of p. In practice, a finite number
of | sonication tests are performed where vectors z; for j=1,---,] are prescribed as input
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at the transducer and give rise to MR-ARFI images. Each image can be summarized as
a vector of displacements &j. These measurements constitute a dataset that is used to
estimate the aberrations a. Then, a model is needed in order to relate a to the entire
displacement dataset. Define the matrices

[diag(Z;)
diag(z2) INXN = IMxJN
Z:= : eC , F:=I;,;®FeC ,
diag(Z
L g(2) ) 25)
P1 d;
p:= p,z GC]M, d:= d.2 E]R]M/
Py d;

where Ij,; is the | x| identity matrix and ® denotes the Kronecker product. Then the
forward model can be written as

d=diag(p)p*, where p=FZa. (2.6)

We note that the forward model in (2.6) is an approximation to the full elastic wave
equation for propagation of acoustic waves in the tissue. The accuracy and effectiveness
of this approximation in the context of MR-ARFI has already been studied in detail [34].
The main benefit of this approximation is that the forward map can be evaluated effi-
ciently which enables the use of a sampling algorithm for extraction of information in the
Bayesian formulation.

2.1.1 Relaxation to a continuous field

Fig. 2 shows examples of phase shift and attenuation obtained with hydrophone mea-
surements for a newborn skull using the Philips Sonalleve V1 system [9]. A schematic of
the setup is depicted in Fig. 2(a) and each image (Figs. 2(b-d)) shows the measured phase
shift and attenuation per transducer element mapped on a 2D projection of the trans-
ducer for a different orientation of the skull. The aberrations appear to change smoothly
between the elements due to the presence of a soft spot in the skull sample. This suggests
that a continuous function is a good model for the aberrations.

The acoustic elements on the emitter are arranged on a segment of a sphere (see
Fig. 1). Project the location of the elements on the xy-plane and assume that the pair
{x,y} are vectors of the normalized x and y coordinates of the elements so that all of the
points fit within the unit disk in R2. Furthermore, let [—1,1]> denote the centred unit
square in 2D and consider a function a: [—1,1]2 — C that is continuous. Next, define the
continuous linear operator

5:C([-L1P) =Y, (S(@xy));=a(57),
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Figure 2: (a) The setup for hydrophone measurements. A hydrophone is placed inside the cavity of a skull
sample and is used to capture pressure signals generated by the activation of individual transducer elements.
The change in phase and amplitude are calculated by comparing these signals to measurements where the skull
is removed. (b) Projection of empirical phase shift and amplitude measurements (corresponding to parameter
a in (2.3)) on a newborn skull for each of the piezoelectric emitters obtained in the article [9]. The aberration
changes smoothly between the elements, which motivates the assumption that the aberrations can be modelled
as a continuous function. Values of amplitude higher than 100% are due to our normalization so that the
average of the amplitude coefficient over the emitters is 100%.

for a€ C([-1,1]?) and j=1,---,N. Combining this with (2.6) defines the forward model
for a continuous aberration function:

d=Ga), G:C([-1,1»)=RM,  G(a):=diag(FZS(a))(FZS(a))*, (2.7)

where the dependence of S on the coordinate vectors is suppressed because the entries
are fixed parameters that only depend on the geometry of the device.

2.2 Inverse problem

We recall Bayes’ rule which can be written (informally) as

TTpost (’1 ’ dobs) X TTikelihood (dobs |El) Tlprior (El), (2.8)

where 7Tprior is the prior probability distribution, reflecting prior knowledge about the pa-
rameter 4, Tjikelihood 15 the likelihood distribution, indicating the probability of an observed
dataset assuming that the parameter a was known, and 7tpest is the posterior distribution
which is the updated distribution on a given both the data and the prior. In order to
avoid the delicacy of setting up the Bayesian inverse problem on the function space we
only consider the discretized version of the problem where the probability distributions
have well-defined Lebesgue densities and refer the reader to [44] for a detailed discussion
on this subject.
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2.2.1 Likelihood distribution 7tjj)elihood

The forward model in (2.7) does not incorporate measurement errors and therefore is not
a complete model of the observed data. Assume that the error between the prediction
of the forward model and the observed data, denoted by dgs, can be modelled as an
independent Gaussian random variable. Then

dps=G(a)+n,  where y~N(0,X), (2.9)

where # is the measurement error and X is a positive definite matrix representing the
covariance of the error. The random variable 7 has a density with respect to the Lebesgue
measure in R/

n”(x):(ZN)’%]ZF%exp <—%X*le>. (2.10)

The conditional distribution of the observed data for a fixed a, which is simply the likeli-
hood, is given as

1
TTikelihood (dobs ’a) =Ty (dobs - g(a)) = Eexp(_q)(a;dobs))/ (2~11)

where
1

D(a;dgps) := 5

(G(a) —dobs) "Z" (G (a) —dops), (2.12)

is referred to as the likelihood potential and B:= (27r)~/M/2|£|71/2 is the normalizing con-
stant so that 7Tjjkelinood 1 @ proper probability distribution.

2.2.2 Hierarchical prior distribution 77pior

Recall that the function 2 was defined on the unit square [—1,1]2. Now suppose that the
box is discretized using a uniform grid of size h and define the matrix (A) jx:=a(—1+(j—
1)h,—1+(k—1)h) for j,k=1,2,---, v/G and v/G=2/h+1, which is the usual finite difference
discretization of a (see Fig. 3(a)). Now, take a; € C® to be the vector that is obtained by
concatenating the entries of A column by column and define the matrices

2 2 0 - o 0]
-1 2 —1 -+ - 0
i;:% S : | eRVE*VC and L:=LoLeRC*C. (2.13)
0 - - -1 2 -
0 -2 2

The hierarchical prior distribution is constructed by first introducing the random vari-
ables

u~N(O0,PY), v~N(O,PY), a~N(0,07), ar~N(0,03), (2.14)
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(@) (b)

Figure 3: (a) Schematic of the underlying field a discretized on a uniform grid of size . The value of the field
is interpolated up to each element of the transducer using a simple interpolation matrix. (b) Examples of draws

from the Gaussian distribution N(O,P_l) for various values of v on a 5050 grid. Smaller values of y result
in samples with smaller features and larger amplitudes.

where P := h(IGXG—’yL)2 and o1 and o7 are fixed. Then the prior on the aberration is
represented via the random variable

ap~Tprior,  ap=ay(0):=diag(a+aju)exp(i(agv)), 0:=[a1 ar u* v*]. (2.15)

Here, @ is the prior mean of the amplification coefficient which is introduced separately
since it is fixed, the exponential function is applied element by element and 0 is intro-
duced to simplify notation in the next section.

The P~! covariance operator in (2.14) is a finite difference discretization of the bihar-
monic operator (I—yA)~? with homogeneous Neumann boundary conditions. Here, A
is the Laplacian in 2D. The finite difference matrix is scaled by a factor / so that draws
from the prior have the proper white noise scaling in the continuum limit as # — 0. The
parameter y controls the size of the features in the samples. Fig. 3(b) shows a few samples
of N'(0,P~1) for different values of -y discretized on a 50 x 50 grid (that is, G =502).

We refer to &y and &, as hyperparameters. They control the variance of the samples,
indicating prior knowledge of the range of variations of the phase shift or attenuation. In-
troducing the hyperparameters as multipliers is crucial to making sure that the sampling
algorithm in the next section is well defined in the continuum limit [1].

It is known that in the continuum limit, draws from the Gaussian distributions in
(2.14) are almost surely Lipschitz continuous [44, Lemma 6.25]. Therefore, (2.15) serves
as a good model for the aberrators of Fig. 2. Since the samples are continuous, a straight
forward linear interpolation can be used to obtain point values of the samples at the
location of the elements. Therefore, the S operator of (2.7) is easily approximated with an
interpolation matrix S.



B. Hosseini et al. / Commun. Comput. Phys., 25 (2019), pp. 1564-1590 1573

2.3 Sampling the posterior distribution 7tpost

The posterior distribution 77,05t is, in essence, the solution to the inverse problem. How-
ever, representing this distribution is infeasible in practice since it may not have a closed
form. Therefore, one often tries to extract different statistics of this distribution or simply
obtain independent samples from it.

Egs. (2.11) and (2.15) identify 7,05t via (2.8) up to a normalizing constant. Computing
this constant is often infeasible. However, Markov Chain Monte Carlo (MCMC) methods
can still be used to generate samples from 77post without knowledge of this normalizing
constant [40]. In this article, the preconditioned Crank-Nicolson (pCN) and Metropolis-
Adjusted Langevin (MALA) algorithms of [10] are used in a Metropolis within Gibbs
(MwG) sampler to generate samples from 7,05t Here, the MALA algorithm is used to
sample from u and «; and pCN is used to sample from v and «;. The reason for this
choice is the fact that the forward map (2.7) is not differentiable with respect to the phase
and so the pCN algorithm is utilized to sample in this direction. The resulting algorithm
can be summarized as follows:

Metropolis within Gibbs (MwG) sampler

1. Set k=0 and choose 8(°) by picking u(®, v(?), ocgo),zxgo) randomly from the prior
distribution and choose é; € [0,00) and 6, € [0,1).

2. (MALA) Update u and «4:

k+1/4)

2.1. Propose A using

v — v W~ N(0,P7Y,
2=01 0y _ 201

246 2461
A 0w L A(0,02),

(k+1/4) _2=01 (k) _ 201¢7
1 2461 1 244

V801

(k+1/4)
v 2+61

P v, (a,(zk);dobs> + w1,

/861
246

Vaqq) (al(qk);dobs> + G1-

29, Get @t1/2) —_g(k+1/4) (i probability K(e(k),,o(k+1/4)).

2.3. Otherwise set 8(k+1/2) —g(k)_

3. (pCN) Update v and a;:
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k+3/4)

3.1. Propose A using

u(k+3/4) = (172) - o N (0,P7Y),

y(k+3/4) — /1 —5%v(k+1/2) +wy,

W o, N (0,03),
a§k+3/4) f1_ 2 (k+3/4 s

32. Set 0%+ —g(k+t3/4) with probability T(G(k+1/2);9(k+3/4)).
3.3. Otherwise set (kt1) =g(k+1/2),

4. Set k— k+1 and return to step 2.

The acceptance probability in step 2.2 is defined as

x(8;0) :=min {1,exp (0(6;0) —p(8;9)) }, (2.16)
where
AN . . 1 N1 —N * VMCD(B;dobS)
9(9,0) '_q)(ordobs)+§ _hz(ﬁ—u)} [qu)(e;dobs)
+é [ &+ ' Vaclq)(e;dobs)
4 _hz(ﬁ+u) qu)(o}dobs)
+é -szlq)(o;dobs) ' 012 0 vleq)(e;dobs) (2 17)
4 _vuq)(e}dobs) 0o P! qu)(e;dobs) .
The acceptance probability in step 3.2 is
7(6;0) :=min {1,exp (P(8;dops) — P(0;dops)) } - (2.18)

Derivation of the acceptance probabilities is outside the scope of this article and the
reader is referred to [10] for details.

Letting agzk) :=a;,(8()), the above algorithm will generate a Markov chain that has
the 7Tpost as its invariant distribution [40]. This means that the samples can be used to
compute the expected value of functions of the aberrations with respect to 7p0st. Suppose

that the expected value of a function f is of interest, then

[ o aldsohda 135 (). 219
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The functions of interest for practical applications are the posterior mean apys, covariance
Cov(a) and standard deviation std(a) of the aberration for each element:

1k
aPM%EZ ah ’
=1

k 2.20
Cov(a %Z Sah —apum)( Saé)—apM) , (2.20)

std(a); ~ (diag(Cov(a)); )1/2 for i=1,2,---,N.

Recall that S is the discrete approximation of the pointwise evaluation operator S in (2.7)
as discussed in Section 2.2.2.

A key detail in implementation of the MwG algorithm is computing the derivative of
the likelihood potential in step 2.1. This gradient can be calculated by solving an adjoint
problem. Let G :=FZSdiag(exp(ia3v)) and recall that the pressure field can be written
as

p=FZSdiag(a+aju)exp(i(a3v)). (2.21)

Then, straightforward calculations show that
V4, G(0) =2a1diag(p)G™u, VuG(0) =2a3Re[diag(p)G*]. (2.22)

Combining this with (2.12) gives

Vaoary| = Vi | B 0@ ~du) .2

Therefore, every step of the MALA update costs roughly twice as much as the pCN up-
date but MALA is more efficient in exploring the posterior.

3 Methods

In this section we describe the details of two experiments that were performed to test
our framework for estimation of the acoustic aberrations. The first test uses a synthetic
dataset of the displacement map which is generated by the same model as the forward
model of Section 2.1. In the second test we use a physical dataset that was obtained using
a Philips Sonalleve V1 device.

3.1 Test with synthetic displacement map

The first test was performed using a synthetic dataset generated with the target aberrator
in Fig. 2(b). The goal here was to test the algorithm in a more relaxed setting where there
was no discrepancy between the forward model and the model for the data.
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Generating the synthetic dataset involves many details including the geometry of the
transducer and the location of the focal point that are besides the main point of this ar-
ticle. To keep the discussion short, we only present a summary of the methodology for
performing the synthetic experiments. The first step in generating the artificial dataset
was to identify the free-field matrix of the transducer F using (2.1) and the location of
the elements and the MR-ARFI voxels; The k-th column of F is simply the free-field cor-
responding to the contribution of the k-th ultrasound emitter evaluated at the center of
each voxel in the MR-ARFI images. Afterwards, the matrix F is constructed using (2.5).
The next step was to construct the design matrix Z which is identified by the z; vectors.
This matrix contains the prescribed values of the amplitude and phase of the acoustic
waves at the transducer. The virtual elements of [17] were used to group nearby piezo-
electric emitters and construct the design matrix. Let Hps¢ denote the 256 x 256 Hadamard
matrix [17, Eq. 8] with columns hy to hyse. Then z; =h;+exp(i% )h; for j=2,---,16.

A noisy version of the design vectors was considered with

2;1oisy ::2j—|—€1 exp (igez) , where €1,€2 NN(O, (005)2 '1256><256)- (31)

This added an extra layer of noise that is not accounted for in the formulation of the in-
verse problem. The standard deviation of the noise in the phase was taken to be 0.05 as a
reasonable estimate of the errors in imposing the sonication patterns in practical settings.
Putting these vectors together gave a noisy design matrix Z"°Y and the synthetic dataset
was generated using

dglgs = FZnoisyaart —|—1], where 1] ~ Ugll;ts . (0, (0.2)2 . 1256><256)/ (32)

and ¢t is the standard deviation of FZ"*Ya?". The standard deviation of the measure-
ment noise was taken to be 0.2 which implied a signal to noise ratio of 5. This choice was
made to replicate data that is highly noisy. Fig. 4 shows examples of the generated noisy
data along with the prescribed phase and amplitudes of the elements.

A total of 16 sonication tests were performed in this example, that is, the design matrix
had 16 columns. In order to solve the inverse problem, a coarse 8 x8 mesh (h=1/4)
was used to discretize the aberration field a. It was assumed that the noise covariance
= (0.15-(7312;)2-1 Mx M- The prior mean was taken to be =1, the prior wave number
v =1/5 and the hyperparameter prior variances were c; =0, =2. The step sizes in the
MCMC algorithm were §; =4 x 107> and 6, =5x 1072 resulting in an average acceptance
probability of 0.32 across the two Metropolis Hastings updates.

3.2 Test with MR-ARFI displacement map

A test was done using the displacement maps obtained from MR-ARFI data which was
acquired using a Philips Sonalleve V1 ultrasound system (Philips Healthcare, Vantaa,
Finland) and an Achieva 3T MRI machine (Philips, Best, Netherlands). A phased array
transducer consisting of 256 elements was used with a focal length of 12 cm and aperture
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vectors) along with the displacement map (the resulting MR image) of the focal point (subsets of d2it,)
scaled by the standard deviation of the images. The displacement maps show the focal point before refocusing.

of 13 cm. The transducer was operating at 1.2 MHz generating ultrasound pulses of 1 ms
ranging from 0 to 300 acoustic Watts. The transducer was submerged in an oil tank (as
illustrated in Fig. 1) and the acoustic field was targeted at a 4 cm phantom which mimics
muscle tissue (CIRS, Norfolk, VA, USA). The displacement due to the ultrasound pulses
was measured using a dedicated MR receiver coil of 4 cm inner diameter. The displace-
ments were measured using MR-ARFI sequences based on a RF-spoiled gradient-recalled
Echo-Planar Imaging (EPI) sequence with Repetition Time (TR) of 42 ms, Echo Time (TE)
of 30 ms, flip angle of 20 degrees, EPI factor of 9, MRI resolution of 64 x 64 pixels, bi-polar
motion encoding gradients of 1 ms in duration and amplitude of 30 mT/m. Images were
obtained every 0.26 seconds from a single slice that was orthogonal to the path of the
beam with a field of view of 180 x 180 mm? and voxels of size 0.7 x 0.7 x 4 mm?3.

At first, a set of measurements was taken without an aberrator. This dataset is used for
estimating the free-field matrix of the transducer and so it is referred to as the calibration
dataset. To obtain this dataset the phase stepping technique of [17,26] was used with 16
virtual elements (the first 16 columns of the Hadamard matrix) with ten steps in phase
for each virtual element. Thus, this dataset consists of 160 sonication patterns. A cosine
function was then fit to the displacement of each voxel during the phase stepping in order
to retrieve the phase and estimate the free-field matrix of each element.

Afterwards, a second set of measurements was taken in the presence of the aberrator
of Fig. 2(a) consisting of 32 sonication patterns. This dataset is referred to as the recon-
struction dataset. The input phase and amplitude of the 256 elements were modified to
imitate the effect of the target aberrator instead of using a physical aberrator in front of
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the beam. That is, the aberrator was added to the prescribed excitation patterns during
each sonication test. This approach is advantageous because the values of the aberration
parameters are known and so we can easily assess the quality of the estimates. Pro-
gramming of the HIFU system and collection of MR images were performed using the
toolboxes MatHIFU and MatMRI [49]. Here, the design matrix Z was constructed from
the vectors Z; = (hy +h;) for j=1,---,16 and Z; = 3 (h; +exp(iZ) )h;) for j=17,---,32. All
tests were performed with a field of view of 7 x 7 voxels, corresponding to /M ="7. Only
a small portion of the images are used from each frame since signal to noise ratio drops
rapidly for voxels that are far from the focal point. Each measurement was repeated ten
times and then averaged in order to reduce the noise.

A consequence of the phase stepping method is that displacement maps are normal-
ized and so the dataset does not include any information regarding the amplitude coef-
ficients. To this end, the inverse problem is only solved for the phase shift and hyper-
parameter ay. The noise covariance in the formulation of the inverse problem was taken
to be £ = (0.2:0gps )1 TMx M Where oo is the standard deviation of the reconstruction
dataset. Recall that here, M =49 (number of voxels) and | =16 (number of images). As
before, an 8 x 8 grid was used for discretization of the aberration field a. The prior mean
was taken to be @ =1 and the prior wave number y =1/5. The prior variances on the
hyperparameters were 0q =0.5 and ¢ =0.5 and the MCMC step sizes were 6; =1.1x107°
and 8, =1.5x 1073 resulting in an average acceptance probability of 0.54 across the two
Metropolis Hastings updates. Since inversion is performed solely for the phase shift,
only the pCN update was utilized.

3.2.1 Calibration of the free-field matrix

The free-field matrix of the transducer was computed using the phase stepping technique
of [17,26] but the estimated field is often not accurate enough to give a satisfactory es-
timate of the aberrations. This issue is amplified when measurements are noisy and the
number of sonication tests is significantly smaller than the number of elements on the
transducer. Furthermore, the MR-ARFI data consists of measurements of displacement
while the forward model of Section 2.1 is valid for acoustic intensity. Although acoustic
intensity is expected to be proportional to displacement [35], the constant of proportion-
ality is unknown.

These discrepancies will manifest as an apparent aberrator in front of the beam. For
example, running the algorithm on the calibration dataset would still estimate a signifi-
cant value for the aberrations. In practice this aberrator must be estimated in a calibra-
tion step before computing the actual aberrator using the reconstruction dataset. This
will also automatically estimate the constant of proportionality between intensity and
displacement. Here, the posterior mean of this inherent aberrator, denoted by acaibration
is computed over the first 32 measurements of the calibration dataset. Once this vector is
available, the calibration can be performed by simply replacing the matrix S by

Scalibrated = diag ( Acalibration ) S. (33)
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3.3 Assessing the quality of refocusing

Take the posterior mean apy to be a good estimator of the true aberration a, and let ¢pp
and ¢ be their corresponding phase shift vectors. Define the vectors

e, :=diag[Fexp(i(¢—¢pm))] Fexp(i(p—¢pm)),
e, :=diag[Fexp(i¢)|Fexp(i¢),
e;:=diag[F1]F1,

and the expected improvement EI and expected recovery ER functionals for the posterior
mean

El(apy):= (1_M> %100, ER(apy):= <M> % 100.
le3lco—le2]loo leslfeo

EI measures the percentage of lost intensity that is recovered while ER measures how the
maximum intensity of the refocused beam compares to the the maximum intensity of a
perfectly focused beam. Since power is directly related to beam intensity, the expected
improvement EI can be viewed as a measure of improvement in treatment efficiency:.
Furthermore, based on Pennes bio-heat law [38], beam intensity is proportional to the
temperature increase at the focal point. This temperature increase has an exponential
relationship to the tissue damage based on thermal dose model [41]. Then the expected
recovery ER can be viewed as a measure of improvement in required treatment dosage
after refocusing. These measures are used in the Section 4 to further assess the perfor-
mance of the estimated aberrations.

4 Results

4.1 Test with synthetic displacement map

A summary of Bayesian posterior statistics using the synthetic dataset is presented in
Fig. 5. Posterior mean and standard deviations are computed using 5 x 10° samples with
a burn-in period of 3 x 10° samples (that is, the first 3 x 10° samples were discarded since
the Markov chain had not yet converged at that point). The posterior mean (Fig. 5(b))
is taken to be a good estimator of the actual value of the parameters. This is supported
by Fig. 5(c) which is the pointwise absolute difference between the posterior mean and
the target aberrator. Here the maximum error in the phase is 21 degrees while the av-
erage error (among the elements) is 4.5 degrees. As for the attenuation, the maximum
error is 45 percent and the average error is 14 percent. Compare these values to Fig. 5(d)
which depicts the standard deviation of the aberration parameters and can be taken as a
measure of uncertainty in the approximations. The standard deviation of the aberrations
is close to the average point wise absolute error. Therefore, the standard deviation is a
good measure of the accuracy of apy. Furthermore, Fig. 5(f) compares the prediction of
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Figure 5: A summary of Bayesian posterior statistics using the synthetic dataset. (a) The target aberrator used
for generating the data. (b) Posterior mean (PM) of the aberration parameters along with (c) the pointwise
difference between the posterior mean and the target aberrator. (d) The standard deviation (std) of the posterior
samples which is indicative of the level of uncertainty. (e) Estimated marginal posterior distributions on the
hyperparameters. (f) A few examples of the synthetic displacement map at the focal point compared with the
prediction of the posterior mean of the aberrator.
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the data using apy to the actual data set on a few frames of the MR-ARFI data. This
shows a good agreement between the prediction and the data and further certifies the
choice of apy as a pointwise estimator of the target. Finally, the expected improvement
El(apm)~71% and ER(apm) &~ 5%. Therefore, using apy to refocus the beam recovers
71% of the lost intensity. However, this only improves maximum intensity by 5% which
is due to the fact that the aberrator of Fig. 5(a) is very weak and the defocused beam is
already at 93% intensity.

In the case of the hyperparameters, one can integrate out the rest of the parameters
and directly estimate the marginal posterior distribution as in Fig. 5(e). Here we demon-
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Figure 6: A few samples from 705t on the aberration parameters. The samples are 10° steps apart in the
Markov chain so that they can be treated as independent.

strate the marginals on zx% and zx% rather than a; and a; as these are the standard devia-
tions of the fields u and v and are more physically relevant. These results indicate a drop
of two orders of magnitude in the standard deviation of the hyperparameters, compared
with the prior standard deviation, indicating that the value of the hyperparameters are
computed with high confidence.

In addition to the above statistics, one can also look at independent samples from
Thpost as depicted in Fig. 6. These samples are generated by choosing individual samples
from the Markov chain that are far enough apart. The distance between the samples
in Fig. 6 was chosen large enough so that the integrated autocorrelation function of the
chain was below 1073. In this case the distance was taken to be 10° steps based on the
worst integrated autocorrelation function in Fig. 10(a). The independent samples can be
taken as examples of aberrators that are likely to have generated the dataset and provide
further insight regarding 7tp0st. It is clear that the samples have very similar features
in comparison to the mean. For example, there are no discontinuities or multi-modal
behavior. This further supports the choice of the posterior mean apy as a point estimator
for the true value of the parameters.

4.2 Test with MR-ARFI displacement map

Figures 8 to 10 show a similar summary of the results for the test with MR-ARFI dis-
placement map as was shown for the test with synthetic displacement maps. Here the
results were computed using 5 x 10° samples from the Markov chain with a burn-in pe-
riod of 3x10°. Fig. 7(b) shows the posterior mean of the phase shift ¢py; which is once
again taken to be a good estimator of the true phase shift. Fig. 7(c) depicts the pointwise
absolute error between ¢py and the target. Here, the maximum error in the phase is 45
degrees and the average error across the elements is 19 degrees. The errors here are no-
tably larger as compared to the test with the synthetic displacement map, especially in
the case of the attenuation. This is most likely due to large discrepancies between the
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Figure 7: A summary of Bayesian posterior statistics using the experimental MR-ARFI dataset. (a) The target
aberrator imposed on the transducer. (b) The posterior mean (PM) phase shift and (c) pointwise difference
between the posterior mean and the target aberrator. (d) The standard deviation of the posterior. (e) The
marginal distribution of the hyperparameters estimated using the Markov chain. (f) A comparison between a
few frames of the MR-ARFI displacement map and the prediction of the forward model at the posterior mean.

forward model and the measured MR-ARFI data. Nevertheless, the overall shape of the
aberrator and range of phase shifts are captured.

Fig. 7(d) shows an estimate of the standard deviation of the aberrations under 7tpost
indicating a possible error of plus or minus 12 degrees. It should be noted that this error
is still smaller than the true pointwise error and the algorithm underestimate the true un-
certainty of the solution. Fig. 7(e) shows the posterior marginal on the hyperparameters.
As before, the posterior standard deviation on the hyperparameters has been reduced
significantly as compared to that of the prior distribution which is a sign that these pa-
rameters are well identified by the data. To check whether the prediction of apy; matches
the data, a few frames of the MR-ARFI images are compared to the prediction at the pos-
terior mean in Fig. 7(f). The matching between the data and the prediction was adequate
at the focal point but deteriorates away from it. Specifically, the prediction obtained the
correct range of variations of each frame and the right location for the point of maximum
intensity.

For this dataset EI(apy ) ~42% which predicts a good recovery of the intensity. How-
ever, expected recovery ER(apy) =~ 3% which is smaller in comparison to the synthetic
test above. This is expected since the estimate of the aberrator is not as accurate as before
due to discrepancies between the model and the physical data.
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Finally, a few independent samples from 77,05t are presented in Fig. 8. The samples
are 10° steps apart in order to ensure their independence. This choice was based on the
slowest decaying integrated autocorrelation function in Fig. 10(b). Once again, compar-
ing the samples to the posterior mean indicates that the samples are close to the posterior
mean and so apy is a reasonable point estimator for the parameter values.

5 Discussion

5.1 Mathematical framework

The most notable feature of the forward problem in (2.6) is that d is a non-linear function
of the aberration a. This is an attribute of the MR-ARFI data which makes the inverse
problem more challenging to solve. In particular, this means that one-shot methods for
computing the minimizers of regularized least squares functionals (such as the common
Tikhonov regularization) are no longer applicable. In this case one can use numerical
optimization algorithms such as Newton’s method or the L-BFGS algorithm [37, 47] to
find a minimizer but this choice requires a modification of the formulation to get around
the non-differentiability of the forward map with respect to the phase.

Another effective method for estimating the phase shift, which lies within the opti-
mization category, is the matrix completion approach of [7]. Matrix completion recasts
the phase retrieval problem as a penalized least squares problem in a high dimensional
space with a linear forward map (2.6). The resulting solution is a low-rank square matrix
and the phase shift is given by the first eigenvector of that matrix. In Fig. 9 we present
a comparison between the Bayesian approach and the matrix completion method for the
synthetic dataset of Section 3.1, where the matrix completion problem was solved using
the TFOCS package [4,5]. We note first that matrix completion is more efficient than
the Bayesian approach, since the minimizer can be found in about 15 minutes while the
Bayesian method requires an hour to obtain an stable estimate of the posterior mean and
variance (both computations were performed on an Apple MacBook Pro laptop with a
2.3 GHz dual-core Intel Core i5 processor). However, the Bayesian solution appears to
be significantly more accurate. Furthermore, a comparison to Fig. 5(d) shows that the
uncertainty estimate obtained using the Bayesian method serves as a certificate that indi-
cates the order of the error in the Bayesian estimate; such an uncertainty estimate is not
available for matrix completion. Finally, we tuned the regularization parameter in the
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Target Bayesian PM Matrix completion

Figure 9: Comparison between phase shift estimators obtained using the Bayesian approach and the matrix
completion method of [7] (top row), along with the corresponding absolute error between the target and
estimate (bottom row). All values are reported in degrees.

matrix completion problem to obtain a good estimate of the phase shift. The Bayesian
method on the other hand estimates the hyperparameters automatically.

From a practical perspective, our formulation of the forward and inverse problems
offer complete freedom in the choice of the number of sonications tests |, the size of the
MRI images M, the size of the parameter space for the aberrations G and the number of
elements N. It is often preferable to take | to be as small as possible to reduce the time
required to collect the MRI data. It is also desirable to choose G to be small in order to
reduce the computational cost of the algorithms. Taking M to be large means that each
MRI image will have more information. However, the signal to noise ratio drops rapidly
for voxels that are far from the focal point. This is the reason why the dataset in the MR-
ARFI experiments uses a smaller field of view compared to the artificial example. Then
the choice of each one of these parameters requires further study in future.

5.2 Performance of the MCMC algorithm

The pCN algorithm is a modification of the random walk Metropolis Hastings algorithm
that is well defined on a function space [10]. It tends to generate samples that are highly
correlated and so it explores the posterior distribution slowly. However, the pCN update
does not require derivative information and therefore can be used to sample from non-
differentiable densities. This also means that each step of pCN is relatively inexpensive.
The MALA algorithm utilizes an optimal proposal step that results in less correlated
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Figure 10: Autocorrelation and trace plots of the likelihood potential and hyperparameters using (a) the synthetic
dataset and (b) the experimental MR-ARFI displacement map.

samples [10,40] which makes the algorithm better at exploring the posterior distribution
Tlpost but each step of the algorithm has a higher computational cost. This cost becomes
significant when a large dataset is at hand, because this increases the cost of gradient
computations.

The difference between the two steps of the algorithm is apparent in Fig. 10(a) where
the integrated autocorrelation functions and trace plots are presented for the likelihood
potential ® and the squared hyperparameters a7 and &3 in the test with the synthetic
dataset. The integrated autocorrelation of a3 decays slower than that of aZ. This is likely
because samples from the latter are generated using the MALA updates. The a3 chain
is slow because in this case the data is fairly informative in the direction of phase shift,
meaning that the posterior distribution 77p0st is dominated by the likelihood rather than
the prior distribution. Looking at the trace plots in Fig. 10, it is interesting to note that
the ® chain demonstrates better mixing in comparison to the chains for a? and a3. We
observe a similar behavior in the case of the physical dataset.

The results of this article were obtained using an implementation of the MwG algo-
rithm for estimation of the aberrator in MATLAB on a personal laptop (MacBook Pro
with a 3GHz Intel Core i7 processor and 8 GB or memory) in less than two hours. This
processing time may not be ideal for practical settings but it can be effectively reduced
by implementation of the algorithm in more efficient languages and applying techniques
such as parallel tempering and population MCMC [29] to further reduce the required
sample size needed to compute the expectations.
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5.3 Quality of the estimates with synthetic and physical datasets

In Section 3.1 the results with a synthetic dataset were presented. This example is viewed
as an idealized setting where there is little discrepancy between the process for genera-
tion of the data and the forward model. The reconstructions were adequate even in the
presence of large errors, the posterior mean apy of the phase (Fig. 5(b)) was close to the
actual value of the aberrations (the average pointwise error of the phase estimate was 4.5
degrees amounting to 15% relative error). Furthermore, the estimated standard deviation
appeared to be a good estimate of the expected errors in the reconstruction. However, in
the case of the attenuation, the posterior mean apy was not as accurate as the phase shift
even in this idealized setting (compare Fig. 5(a) and (b)). This was due to the fact that the
displacement data was not sensitive to relatively small changes in the attenuation.

In Section 4 we used the expected improvement EI and expected recovery ER func-
tionals as a measure of the quality of reconstructions. Recall that EI is a measure of
improvement in power efficiency while ER is a measure of improvement in required
dosage. In the synthetic and physical tests we recovered 3 to 5% of the total intensity
after refocusing. This was partly due to the fact that we used a weak aberrator that re-
duced the beam intensity by 7%, so that the beam was already at 93% intensity without
any focusing. Of course this makes our aberrator harder to estimate as compared to a
stronger aberrator. However, even in this setting, a 3 to 5% improvement in beam in-
tensity results in a similar gain in power efficiency but has a more significant impact in
dosage efficiency due to the fact that tissue damage grows exponentially [41] as intensity
(and in turn temperature) increases at the focal point.

Finally, we note that the computed free-field matrix of the transducer and the calibra-
tion step have a significant impact on the quality of the reconstructions. In the test with
experimental MR-ARFI displacement map of Section 3.2 the free-field was estimated us-
ing 160 sonication tests with ten steps in phase for each virtual elements. Using subsets
of this data resulted in a less accurate free-field matrix which in turn resulted in very dif-
ferent reconstructions. Then one might prefer to use a large dataset in order to obtain an
accurate estimate of the free-field matrix which can be used on a smaller reconstruction
dataset later on. The fact that calibration can be done offline makes this a viable approach
in practical settings.

5.4 Future research

The framework presented in this article can be extended in multiple directions in order to
improve the quality of the reconstructions which, in turn, will lead to better focusing of
the beam. Obtaining an accurate estimate of the empirical free-field with the minimum
number of sonication tests is a crucial task. The estimates of the aberrations become more
sensitive to the free-field matrix as the dataset becomes smaller. Therefore, a good esti-
mate of the free-field matrix is needed in order to further reduce the number sonication
tests that are performed under in vivo or clinic conditions.
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Another promising direction for future research is improving the sampling algorithm.
MCMC algorithms often have a difficult time traversing high dimensional distributions.
In such cases, strategies such as population or adaptive MCMC or parallel tempering [29]
can be used to improve the statistical performance of the chain. Alternatively, one can
also improve the algorithm by changing the forward model so that it is differentiable in
the phase. This would allow the use of the MALA update on the entire posterior which
would greatly improve the performance.

On the topic of MR-ARFI experiments, one can explore multiple directions for im-
proving the quality of the dataset. An interesting question is the interplay between voxel
size, measurement noise and acquisition duration. Smaller voxels give a better estimate
of the free-field matrix and the aberration but they are associated with more noise. This,
in turn, requires smaller phase steps and longer acquisition time or perhaps more aver-
aging steps per sonication test. Therefore, finding the optimal parameters for generating
the dataset remains a challenge in practice.
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