211 research outputs found
Dynamics of Proton Transfer in Mesoscopic Clusters
Proton transfer rates and mechanisms are studied in mesoscopic, liquid-state,
molecular clusters. The proton transfer occurs in a proton-ion complex solvated
by polar molecules comprising the cluster environment. The rates and mechanisms
of the reaction are studied using both adiabatic and non-adiabatic molecular
dynamics. For large molecular clusters, the proton-ion complex resides
primarily on the surface of the cluster or one layer of solvent molecules
inside the surface. The proton transfer occurs as the complex undergoes
orientational fluctuations on the cluster surface or penetrates one solvent
layer into the cluster leading to solvent configurations that favor the
transfer. For smaller clusters the complex resides mostly on the surface of the
cluster and proton transfer is observed only when the complex penetrates the
cluster and solvent configurations that favor the proton transfer are achieved.
Quantitative information on the cluster reaction rate constants is also
presented.Comment: To appear in JCP (March). Postscript figures available on request
([email protected]
Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study
Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects
Prediction of the Size Distributions of Methanol-Ethanol Clusters Detected in VUV Laser/Time-of-flight Mass Spectrometry
The size distributions and geometries of vapor clusters equilibrated with methanol−ethanol (Me−Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843−852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et3H+ at m/z = 139 in the vapor corresponding to 10:90% Me−Et liquid mixture and Me3H+ at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Me−Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols
Parallel Excluded Volume Tempering for Polymer Melts
We have developed a technique to accelerate the acquisition of effectively
uncorrelated configurations for off-lattice models of dense polymer melts which
makes use of both parallel tempering and large scale Monte Carlo moves. The
method is based upon simulating a set of systems in parallel, each of which has
a slightly different repulsive core potential, such that a thermodynamic path
from full excluded volume to an ideal gas of random walks is generated. While
each system is run with standard stochastic dynamics, resulting in an NVT
ensemble, we implement the parallel tempering through stochastic swaps between
the configurations of adjacent potentials, and the large scale Monte Carlo
moves through attempted pivot and translation moves which reach a realistic
acceptance probability as the limit of the ideal gas of random walks is
approached. Compared to pure stochastic dynamics, this results in an increased
efficiency even for a system of chains as short as monomers, however
at this chain length the large scale Monte Carlo moves were ineffective. For
even longer chains the speedup becomes substantial, as observed from
preliminary data for
Sucessão familiar: os desafios ao longo das gerações / Family succession: the challenges throughout the generations
As empresas familiares, na sua grande maioria, começam suas atividades de forma bem pequena. Apresentam, inicialmente, poucos produtos, serviços e funcionários, e não possuem estrutura física e nem financeira estável. Porém, com o passar dos anos suas atividades atingem certo sucesso, e com o crescimento econômico das mesmas, há uma forte necessidade de melhoramento estrutural e profissional dos envolvidos, o que é fundamental para a continuidade da vida financeira de qualquer empresa. Portanto, o objetivo deste artigo é identificar quais foram às principais dificuldades encontradas no processo sucessório para o antecessor e sucessor de uma empresa familiar? Foram realizadas entrevistas com cinco empresas familiares de Venda Nova do Imigrante, com aplicação de um questionário aos antecessores e sucessores da empresa, para avaliar suas dificuldades neste processo e as devidas contribuições. As principais dificuldades encontradas no processo de sucessão na visão do antecessor foram o medo da inovação e a dificuldade em acompanhar o raciocínio dos filhos
Simultaneous ion and neutral evaporation in aqueous nanodrops: experiment, theory, and molecular dynamics simulations
Ideal cardiovascular health and inflammation in European adolescents: The HELENA study
Background and aims
Inflammation plays a key role in atherosclerosis and this process seems to appear in childhood. The ideal cardiovascular health index (ICHI) has been inversely related to atherosclerotic plaque in adults. However, evidence regarding inflammation and ICHI in adolescents is scarce. The aim is to assess the association between ICHI and inflammation in European adolescents.
Methods and results
As many as 543 adolescents (251 boys and 292 girls) from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study, a cross-sectional multi-center study including 9 European countries, were measured. C-reactive protein (CRP), complement factors C3 and C4, leptin and white blood cell counts were used to compute an inflammatory score. Multilevel linear models and multilevel logistic regression were used to assess the association between ICHI and inflammation controlling by covariates. Higher ICHI was associated with a lower inflammatory score, as well as with several individual components, both in boys and girls (p < 0.01). In addition, adolescents with at least 4 ideal components of the ICHI had significantly lower inflammatory score and lower levels of the study biomarkers, except CRP. Finally, the multilevel logistic regression showed that for every unit increase in the ICHI, the probability of having an inflammatory profile decreased by 28.1% in girls.
Conclusion
Results from this study suggest that a better ICHI is associated with a lower inflammatory profile already in adolescence. Improving these health behaviors, and health factors included in the ICHI, could play an important role in CVD prevention
Evaluation of iron status in European adolescents through biochemical iron indicators: the HELENA Study
BACKGROUND/OBJECTIVES: To assess the iron status among European adolescents through selected biochemical parameters in a cross-sectional study performed in 10 European cities. SUBJECTS/METHODS: Iron status was defined utilising biochemical indicators. Iron depletion was defined as low serum ferritin (SF8.5 mg/l) plus iron depletion. Iron deficiency anaemia (IDA) was defined as ID with haemoglobin (Hb) below the WHO cutoff for age and sex: 12.0 g/dl for girls and for boys aged 12.5-14.99 years and 13.0 g/dl for boys aged ≥15 years. Enzyme linked immunosorbent assay was used as analytical method for SF, sTfR and C-reactive protein (CRP). Subjects with indication of inflammation (CRP >5 mg/l) were excluded from the analyses. A total of 940 adolescents aged 12.5-17.49 years (438 boys and 502 girls) were involved. RESULTS: The percentage of iron depletion was 17.6%, significantly higher in girls (21.0%) compared with boys (13.8%). The overall percentage of ID and IDA was 4.7 and 1.3%, respectively, with no significant differences between boys and girls. A correlation was observed between log (SF) and Hb (r = 0.36, P < 0.01), and between log (sTfR) and mean corpuscular haemoglobin (r = -0.30, P < 0.01). Iron body stores were estimated on the basis of log (sTfR/SF). A higher percentage of negative values of body iron was recorded in girls (16.5%) with respect to boys (8.3%), and body iron values tended to increase with age in boys, whereas the values remained stable in girls. CONCLUSIONS: To ensure adequate iron stores, specific attention should be given to girls at European level to ensure that their dietary intake of iron is adequate.status: publishe
- …
