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The recoil growth (RG) scheme is a dynamic Monte Carlo algorithm that has been suggested 
as an improvement over the configurational bias Monte Carlo (CBMC) method (Consta, S., 
Wilding, N. B., Frenkel, D. and Alexandrowicz, Z., 1999, J .  chem. Phys., 110, 3220). The RG 
method had originally been tested for hard core polymers on a lattice, and it was found that 
RG outperforms CBMC for dense systems and long chain molecules. In the present paper, the 
RG scheme is extended to the practically more relevant case of off-lattice chain molecules with 
continuous interactions. It is found that for longer chain molecules RG becomes over an order 
of magnitude more efficient than CBMC. However, other schemes are better suited to the 
computation of the excess chemical potential. Moreover, it is more difficult to parallelize RG 
than CBMC. 

1. Introduction 
Computer simulations help us to relate the macro- 

scopic properties of polymers to the atomic structure 
of these molecules. Simulations are a useful aid in the 
interpretation of experimental data and allow us to gain 
a better insight into the validity of theoretical models. In 
all many-body simulations, it is essential to perform 
adequate sampling of the phase space of the model 
system. This becomes problematic for systems of long 
chain molecules, in particular at high densities. In fact, 
the slow sampling of phase space occurs also for real 
polymers: at high densities the natural (‘reptation’) 
dynamics of long polymer chains is very slow. Molecular 
dynamics simulations aim to mimic the natural 
dynamics of a system, and therefore suffer from the 
same problems. However, in Monte Carlo (MC) simula- 
tions we are not constrained to sample phase space (or 
actually the configuration space) using natural 
dynamics. This is why, for dense polymer systems, 
Monte Carlo methods have the potential to be more 
efficient than molecular dynamics. 

Many MC schemes have been proposed to sample the 
configuration space of both isolated polymers and mod- 
erately dense polymeric systems. Among these methods 
we should distinguish between static Monte Carlo 

* Author for correspondence. e-mail: frenkel@amolf.nl 

schemes, in which many independent polymer config- 
urations are generated from scratch, and dynamic 
(Markov chain) MC schemes that accept or reject new 
chain conformations by comparing their ‘weight’ (in the 
simplest cases: Boltzmann weight) with that of the old 
configuration. Examples of static MC schemes that can 
sample configurations of long polymer chains are the 
single- [l] and double-scanning [2] methods of Meiro- 
vitch and, in particular, the pruned-enriched Rosenbluth 
(PERM) method of Grassberger [3]. Among the 
dynamic sampling schemes, the configurational bias 
Monte Carlo (CBMC) [&7] has found many applica- 
tions [X-lo]. CBMC uses the algorithm suggested by 
Rosenbluth and Rosenbluth [ l l ]  for generating a con- 
figuration of a chain molecule. In CBMC a chain con- 
formation is grown segment by segment. For each chain 
segment that has to be inserted several trial segments are 
generated, and one of these segments is selected with a 
probability proportional to its Boltzmann factor. This 
introduces a bias in the growth of the chain, which can 
be removed exactly by a modification of the acceptance/ 
rejection rule [7]. In this way, chain configurations are 
generated with the correct Boltzmann weight. An im- 
portant disadvantage of CBMC is that in the growth 
of the chain only one step ahead is examined, which 
means that one cannot avoid that the growth of the 
chain may lead into a ‘dead-end street’. To compensate 
for this high attrition rate in the chain construction, one 
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1244 S. Consta et al. 

is forced to use a large number of trial directions. For 
hard core interactions, this leads to a broad distribution 
of the Rosenbluth weight and therefore low acceptance 
rates [12]. The recoil growth (RG) [12] algorithm, first 
applied to polymers with hard core interactions, has 
been suggested as an alternative to CBMC which does 
not suffer from the ‘short-sightedness’ of CBMC. The 
RG method is a ‘look-ahead’ dynamic MC scheme (in 
contrast to the static schemes of [l-31). In this algor- 
ithm, a chain is extended by one segment provided 
that a pathway (also called feeler) of certain length 
ahead of the current segment can be grown successfully. 
However, the feeler may fail to grow because of overlaps 
with other segments. In that case, the feeler can recoil up 
to the part of the chain that has been grown successfully. 
There are two parameters that one has to tune to obtain 
good construction and acceptance rates: the length of 
the feeler and the number of trial directions. For hard 
core chains it was found that a small number of trial 
directions in combination with a relatively large recoil 
length is optimal. This is because a small number of trial 
directions ensures that the distribution of the Rosen- 
bluth weight is small, which increases the acceptance 
probability of the chain. The consequence of a large 
feeler is that the accessible part of the phase space for 
a segment of the chain is much larger than for CBMC, 
which means that it is more likely that a favourable 
configuration will be found. Just as for CBMC, RG 
introduces a bias in the generation of a chain which 
can be removed exactly by a modification of the accep- 
tance/rejection rule. In [12] the RG algorithm was tested 
for self-avoiding walks on a lattice and its efficiency was 
compared with CBMC. It was found that for low den- 
sities (e.g.. 30% occupancy of the lattice), CBMC per- 
forms better than RG for both short and long polymer 
chains. For higher densities and chain lengths longer 
than 20 segments, RG is an order of magnitude more 
efficient than CBMC. 

The purpose of the present paper is to extend the RG 
algorithm to off-lattice chain molecules with continuous 
interactions. Although the algorithm is inspired by the 
one for hard core interactions, there are several import- 
ant differences. 

In section 2 the RG algorithm for the case of contin- 
uous interactions is described, while in section 2.3 it is 
shown that RG can be reduced to CBMC only for hard 
core potentials. Section 3.2 contains a study of the effi- 
ciency compared with CBMC and suggestions for the 
optimization of the method. In appendix A we present 
an alternative (but less efficient) algorithm to compute 
the Rosenbluth weight of a chain. In appendix B we 
explore the performance of RG for the computation of 
the excess chemical potential. We find that RG is less 
efficient than the ‘Rosenbluth’ scheme for computing the 

excess chemical potential and, a fortiori less efficient 
than the PERM scheme of [3]. In appendix C we show 
that there is little point in parallelizing the RG scheme 
using a ‘multiple chain’ algorithm. 

2. Description of the algorithm 
The RG algorithm for hard core chains is described in 

detail in [12]. Here we discuss extensions of this algor- 
ithm for continuous potentials. In what follows we 
describe the RG scheme for canonical MC in which M 
chains of length N are sampled. It is straightforward to 
extend this algorithm to other ensembles [7, 131. 

2.1. Construction of a chain 
The central step in both CBMC and RG is the selec- 

tion of a specific polymer trial conformation from an 
entire ‘tree’ of possible conformations. The essential dif- 
ference between the ‘continuous-potential’ RG method 
and the earlier schemes is that the selection of the trial 
conformation involves two stochastic steps: the first is 
the selection of a subset of open branches on the tree, 
the second is the selection of the trial conformation 
among the open branches. The crucial new concept in 
RG is that trial directions can be either open or closed. 
A trial direction that is closed will never be chosen as a 
part of the chain. For hard core potentials, a trial direc- 
tion is closed if it leads to a configuration that has at 
least one hard core overlap, otherwise it is open. There- 
fore, the selection of the open trial directions is determi- 
nistic rather than stochastic. By contrast, for continuous 
potentials we use a stochastic rule to decide whether a 
trial direction is open or closed. The probability p I  that 
direction i is open depends on its energy y, hence 
p I  = p,(u,) .  It is important to note that, in principle, 
this stochastic rule is quite arbitrary, and the only 
restriction is 0 < p ,  d 1 (for hard core potentials, 
0 < p L  5 1). However, it is useful to apply the following 
restrictions 

lim p i ( u i )  = 0, 
U,’W 

lim pi(ui) = 1. (1) 
u,+--Co 

An obvious choice that obeys these restrictions is the 
standard Metropolis acceptance/rejection rule [7, 13, 141 

pi(ui) = m i n ( l , e x ~  [ - P ~ i l ) ,  (2) 
in which ,B = l/kBT. For hard core potentials, popen is 
either equal to 0 (at least one overlap) or 1 (no overlaps). 
Once we have determined the set of open trial directions, 
the RG algorithm for a chain with continuous inter- 
actions becomes almost identical to that for a hard 
core chain. 
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To start, the first segment of a chain is placed at a 
random position in the system. If the first posi- 
tion is open, we continue with the next step. 
Otherwise, the chain is discarded. 
A direction is assigned randomly to a segment i 
( i  > 1). If this direction leads to overlap with 
another segment in the system, another direction 
is tried, up to a maximum of k trial directions. In 
principle, k can vary with i. In fact, it can even be 
a stochastic variable. 
If an open direction is found, a new segment is 
added and the number of the directions for seg- 
ment i that have not yet been explored is 
recorded. If all directions are blocked the chain 
retracts by one step to segment i - 1, and the 
unused directions are explored. The chain is 
allowed to recoil up to length (Emax - 1 + 1) 
where lmax is the maximum length that the 
chain has attained in its growth history, and 1 is 
the recoil length, which is a fixed simulation par- 
ameter. When a chain is not allowed to recoil the 
entire chain is discarded. 
The previous steps are repeated until the com- 
plete chain has been grown. After the successful 
construction of a chain, the weight of the new 
chain (W(n)) is computed. This weight will be 
needed in step 6 to determine whether or not 
the new conformation will be accepted. The 
computation of W will be discussed in the next 
section. 
For the old chain, on every segment of the old 
chain k - 1 feelers of length 1 are grown and the 
number of feelers that is grown successfully is 
recorded. Using this information, one can com- 

where N ( i )  is the Boltzmann weight of state i and 
P(o  --f n) is the transition probability from state o 
(old configuration) to state n (new configuration). 

In the RG algorithm the transition probability 
includes the construction of a particular tree of trial 
segments for both the new and the original states, the 
stochastic choice of the subset of open segments in both 
trees, the selection of a particular configuration among 
the branches of the new tree, and finally the probability 
of accepting the new configuration. The transition prob- 
ability from the old to the new state is given by 

~ ( 0  + n) = C Pg(tn)Pg(OnItn)Pg(rWnItniOn) 

x p ,  ( t o  Irw,)P,(00 It,, TWO) 

x Pacc(0  n), ( 5 )  

r,,t, . o o  @" 

where Pg(tn) is the probability of generating the new tree 
t,. In what follows we shall consider the case that this 
probability is uniform. However, in general, when simu- 
lating molecules with internal (bond and torsion) poten- 
tials, it may be advantageous to generate trial segments 
according to the intramolecular Boltzmann distribution. 
Alternatively, it is also possible to take bonded intra- 
molecular interactions into account in equation (2). 
However, this will lead to an inefficient algorithm 
because in that case many trial directions will be 
found closed on the basis of their internal energy. 
Ps(Onltn) is the probability of selecting a particular set 
of open/closed directions (0,) on the new tree r,. 
P(rw,lt,, 0,) is the probability of generating a random 
walk (rw) on the set of open/closed directions 0, of the 
new tree t,. This factor is equal to 

(6) 
pute the weight of the old configuration (W(o)) .  1 

P(rWnItniOn) = r i  The new configuration is accepted with a prob- 
ability IT mi 

I= I 

~ ~ ~ ~ ( o + n )  =rnin(l,*). ( 3 )  in which mi is the number of successfully grown feelers 
at position i in the chain. mi is always larger than zero, w (0) 

In the next sections, we derive the form for W(n) and 
W ( o )  that is required in order that the MC algorithm 
obeys detailed balance. 

2.2. Detailed balance condition and acceptance 
Probability 

In a Markov-chain Monte Carlo scheme we need to 
ensure that different points in configuration space are 
visited with a frequency proportional to their Boltz- 
mann weight. Usually this is achieved by imposing the 
detailed balance condition 

N(o)P(o -+ n) = N(n)P(n + o ) ,  (4) 

because if it were not the trial move would not have 
resulted in any new configuration, and it would have 
been rejected. The next two terms are related to the 
old configuration: Pg(tolrw,) is the probability of gen- 
erating a tree around the old configuration (ix., the old 
configuration is included in the tree, the other configura- 
tions are generated) and P,,(O0It,, rw,) is the probability 
of selecting a particular set of open/closed directions on 
this tree; however, the old configuration of the chain is 
always 'open'. Finally, the term P a c c ( o  + n) is the prob- 
ability that the transition from o to n is accepted. The 
transition probability from the new (n) to the old (0) 
state is written as equation (5) by exchanging o and n. 
Detailed balance is satisfied by imposing the stronger 
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1246 S. Consta et al. 

condition of super-detailed balance [7], which means 
that we obey detailed balance for all possible sets of 
trees and open/closed directions of both the new and 
old configurations ( [ to ,  t,, O,, On]). Many factors in 
Pg(Onltn, rw,) that are found in the transition prob- 
ability from the new (n) to the old (0) state cancel 
with the factors of Pg(Onltn) which are in the expression 
for the transition probability from the old (0) to the new 
(n) state. The only remaining term is the probability of 
generating open directions along the backbone of the 
tree. Therefore, the correct acceptance/rejection rule is 
given by 

(7) 

in which W(n) is 

In this equation,f is the number of trial positions for the 
first segment, which is equal to 1 when the first segment 
of the chain is placed at a random position in the system. 
Note that the term fkN-'  is present in both the 
numerator and denominator of equation (7) and is 
therefore irrelevant. We include this term to emphasize 
the similarity of W with the Rosenbluth weight [ll]. We 
obtain the expression for W(o), by exchanging n and 0. 
If we choose equation (2) as our stochastic rule, there is 
complete cancellation of Boltzmann factors associated 
with the selected trial segments (i) as long as ui 0. For 
hard core interactions p i  = 1, in which case the algor- 
ithm reduces to the RG algorithm for hard core poten- 
tials [12]. 

For the simulation of branched chain molecules, there 
will be an additional term in equation (5) for the prob- 
ability of selecting a random growth path on the 
branched molecule. As this probability is uniform, this 
does not influence the final detailed balance expression 
(equation (8)). For the simulation of branched molecules 
with bonded intramolecular interactions special tech- 
niques like the coupled-decoupled CBMC method by 
Siepmann and coworker [8] may be required. 

An alternative scheme to compute the weights W(n) 
and W (0) can be found in appendix A. As this scheme is 
more complex and less efficient than the scheme pre- 
sented above, we will not discuss it in the main text of 
the paper. 

2.3. Comparison with CBMC 
It is instructive to compare RG with CBMC for when 

the recoil length 1 is equal to 1. In [12] it  was explained 
that, for hard core potentials, RG and CBMC become 

identical when 1 = I .  Below we show that this is not the 
case for continuous potentials. In other words, RG is 
not simply a generalization of CBMC. In CBMC we 
retain all possible trial directions and then select a par- 
ticular direction i with a probability proportional to its 
Boltzmann weight b, = exp [-@A,]. For models with con- 
tinuous interactions, b, > 0 (even though it may be very 
small). Hence, in a naive implementation of the CBMC 
scheme, the growth of a trial configuration will be com- 
pleted, no matter how small b, is (see, however, [15, 161). 
Of course, in the acceptance step, conformations with a 
very low weight will most probably be rejected. By con- 
trast, in the RG scheme unlikely configurations are 
weeded out at an early stage because, most probably 
they will be 'closed'. One might think that RG would 
become similar to CBMC if we do not allow trial seg- 
ments to be closed (i.e., if p , (u , )  is always equal to one). 
However, if we do that, all generated configurations are 
equally likely to be selected, irrespective of their Boltz- 
mann weight. Clearly, that would be much worse than 
CBMC (unless k = I ,  in which case both schemes reduce 
to the worst possible algorithm, i.e., random insertion). 
Otherwise, RG is only equivalent to CBMC in the case 
that 1 = 1 provided that all configurations that have a 
nonzero Boltzmann weight, do in fact have the same 
Boltzmann weight. Clearly, this condition is fulfilled 
for hard core potentials. However, in general, RG and 
CBMC are based on different stochastic rules to gen- 
erate trial Configurations. 

3. Simulations 
3.1. Simulation details 

To study the efficiency of the continuous-potential 
RG method, we have performed NVT Monte Carlo 
simulations of M linear chains (length N )  with truncated 
Lennard-Jones interactions between the non-bonded 
segments. In reduced units (well depth E = 1, Lennard- 
Jones diameter n=  l ) ,  the truncated LJ potential has 
the following form: 

u = o  r > rat. (9) 

We have used rCut = 2.5. The bond length between two 
successive segments was chosen to be 1 .O. Three succes- 
sive segments of a molecule have a constant bond angle 
of 2.0 rad. Intramolecular non-bonded interactions were 
taken into account for segments that are separated by 
more than two bonds. 

To enhance the efficiency of both the CBMC and the 
RG schemes, we have divided the intermolecular poten- 
tial energy into short range and long range parts, 
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Recoil growth MC for chain molecules 1247 

u = U(r < r&) + S(r,t,, < r < rcut),  (10) 

in which rlut is a second cutoff radius. As shown in [17, 
181, the repulsive part of the potential is most important 
for the generation of a chain. For CBMC we generate 
chain segments only with the short range part of the 
potential and correct for the bias afterwards [17, 181. 
For RG we use only the short range part of the potential 
to decide whether a segment is open or closed. In this 
study, we have used 

Popen = m i n ( l , e x ~  [-P(Uinter(r  < V L )  + uintra)]) ,  ( 1 1 )  

where u,,,tra is the intramolecular energy. 
Since the generation of a chain uses only the short 

range part of the potential, we can make a linked cell 
list to calculate the potential efficiently. Such a cell list 
has to be updated only after an accepted trial move. As 
the number of interactions within the short range part of 
the potential is usually quite small, we can calculate the 
energy of a trial position very quickly. It was found that 
for CBMC, dependent on the system, this will result in a 
speed-up by a factor 2-5. One consequence of this trick 
is that most of the CPU time will be spent in calculating 
the long range part of the potential energy, as the con- 
struction of a chain is very quick. As a consequence, the 
overall efficiency of the simulation does not depend 
strongly on the choice of the simulation parameters 
( . f , k ,  1). This makes it difficult (but also less relevant) 
to find (or predict) the optimal values for (f, k ,  1). 

When the first segment of a new chain is placed at an 
unfavourable position it is not very likely that this trial- 
move will be accepted. Therefore we use CBMC in the 
selection of a position for the first segment [19], for 
which we usef trial positions. One of these positions 
is selected with a probability proportional to its Boltz- 
mann factor. For the old configuration,f - 1 trial posi- 
tions are generated ( thef th  is the position of the first 
segment itself). In order to obey detailed balance, one 
has to multiply the Rosenbluth weight of the new and 
old configuration (equations (8) and (12)) with the sum 
of thef Boltzmann factors; see also equation (21) and [8, 
10, 191. Note that there are several other methods to bias 
the selection of the position of the first segment [lo, 201. 
The value o f f  can be chosen to be quite large for 
CBMC: for example, Martin et al. use f = 10 [8, 161. 
RG is less sensitive to the value o f f  because, if the 
first segment is placed at a position with a very un- 
favourable energy, the chain growth will be terminated 
immediately. 

3.2. Efficiency of’ RG compared with CBMC 
To test the efficiency of our algorithm, we have simu- 

lated the following systems at T = 5.0: 

( I )  N = 10, p = 0.4, M = 40 
(2) N = 10, p = 0.2, M = 20 
(3) N = 20, p = 0.4, M = 20 
(4) N = 20, p = 0.2, M = 10 
(5) N = 40, p = 0.4, M = 10 
(6) N = 40, p = 0.2, M = 5 

Note that p is the segment density. In all our simula- 
tions, we have used r,*,t = 1.5. The length of our cubic 
simulation box was 10.0. We have simulated all systems 
using CBMC (f = 5,10, k = 5,10,15) and RG (f = 5, 
k = 1,2,3,4,5,  1 = I ,  2,3,4,5).  Note that, in principle, k 
itself can be a stochastic variable [12]; however, here we 
have kept it  fixed. We have performed two different trial 
moves. (i) Displacement of a chain. A randomly chosen 
chain is given a random displacement. The maximum 
displacement is adjusted such that 50% of the trial 
moves are accepted. (ii) Regrowth of a chain. A ran- 
domly chosen chain is regrown at a random position 
using either CBMC or RG. 

In every MC a trial move consists of either a trial 
regrowth or a trial displacement (both selected with 
equal probability). The amount of CPU time that is 
spent in the regrowth trial move is monitored during 
the simulation. A total simulation consists of lo5 
cycles, i.e., lo5 trial moves per chain molecule. 

First of all, we have checked if the implementation of 
RG and CBMC is correct. We have found exact 
agreement in average energies, distribution of the 
radius of gyration of a chain and also the radial distri- 
bution function between RG and CBMC for various 
simulation parameters. There are different ways to 
define the efficiency of a simulation. ( I )  Number of 
accepted trial moves divided by the CPU time. This 
definition is often used, but it does not say anything 
about the effectiveness of accepted trial moves in chang- 
ing the molecular configuration. (2) Decay of an auto- 
correlation function that measures the rate of change of 
molecular conformations. For example, we can measure 
the decay of the autocorrelation function of the angle 
between the end-to-end vector of a chain with an arbi- 
trary but constant vector (for example the z axis) as a 
function of the CPU time. The faster the decay of this 
function, the faster a new independent configuration is 
generated. 

The second definition is generally preferred, because 
this one contains not only information about the speed 
of the algorithm but also information about its effective- 
ness in sampling configuration space. 

Table 1 summarizes the efficiency by both definitions 
for our six model systems, with their optimal simulation 
parameter sets for both CBMC and RG. It is found that 
the ratios of efficiencies of CBMC compared with RG 
are equal for both definitions. This means that an 
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0.8 
Figure 1. Efficiency (in arbi- 

trary units) as a function 0.6 
of the number of trial 
directions k for a given 
recoil length 1 for the six 
systems described in sec- 
tion 3.2: left, reduced den- 
sity p = 0.4; right, p = 0.2; 

0.4 

0.2 

0.0 

accepted CBMC move is as effective in changing the 
molecular configuration of the system as an accepted 
RG trial move. This is different from lattice simulations 
of RG and CBMC [12]. For short chains and low den- 
sity the improvement of RG over CBMC is only mar- 
ginal. However, for high densities and long chain 
lengths, RG is an order of magnitude more efficient 
than CBMC. Of course, even when using RG, the effi- 
ciency of the MC scheme decreases quite rapidly at high 
densities and for long chain lengths. However, using RG 
clearly we can extend the density and chain-length 
regime for which MC techniques based on chain 
regrowth are feasible. 

In figure 1 we have plotted the efficiency of the RG 
scheme as a function of the number of trial directions k 
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for various values of the recoil length 1. As is to be 
expected, the efficiency decreases quite rapidly with 
increasing chain length and density. The figure shows 
that, once k ,  the number of trial directions, is larger 
than one, more efficiency is gained by increasing the 
value of the recoil length 1 than by increasing k .  How- 
ever, at higher densities, it is important to optimize k .  Of 
course, for k = 1, the efficiency is independent of the 
recoil length. 

4. Conclusion 
In summary, we have extended the recoil growth 

scheme for systems with continuous potentials. We 
find that in an NVT simulation RG is much more effi- 
cient than CBMC for long chains and high densities. 
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Table 1. Optimal simulation parameters and efficiencies (in arbitrary units) by both definitions (q l ,  q2) for both RG and CBMC. 
The last two columns are the efficiency ratios for RG and CBMC according to different definitions (1, 2, see text). 

RG 

(RG/CBMC), (RG/CBMC)* f , k , l  rll 772 

1 10 0.4 40 10,lO 5.9 0.071 
2 10 0.2 20 10,5 63.2 1.54 
3 20 0.4 20 10,15 0.58 0.013 
4 20 0.2 10 10,lO 16.2 0.748 
5 40 0.4 10 10,15 0.031 0.0017 
6 40 0.2 5 10.10 3.6 0.35 

~~ ~ ~ 

5,3,4 22.4 0.27 3.8 3.8 
5,2,2 102.5 2.5 1.6 1.7 
5,3,5 5.0 0.12 8.6 8.4 
5 2 2  35.7 1.8 2.2 2.4 
5,3,5 0.81 0.039 26.0 23.0 
5.2.3 9.83 1.02 2.7 2.9 

However, RG is less suitable for parallelization and the 
computation the excess chemical potential using 
Widom's test particle method. 
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Appendix A 
Alternative algorithm to compute the weight 

Instead of the method described in section 2.2, it is 
also possible to calculate the probability that a certain 
path on the tree t is followed explicitly, without having 
to use terms that represent the probability of generating 
a set of open/closed directions (P ,  (0, I t,), 
Pg(Oolt,,rwo)). This means that 0, and 0, do not 
appear in the super-detailed balance expression (equa- 
tion (5)) .  When the probability to follow a path on the 
tree is equal to 9, in order to obey detailed balance and 
to use equation (7) as acceptance/rejection rule we have 
to redefine the weight W ( n )  as 

To obtain the correct expression for W ( o )  we have to 
replace n with 0. To calculate 9 we have to extend all 
feelers up to the recoil length 1 and calculate the prob- 
abilities that each of these trial segments is open. 

1 2 

Figure A l .  Schematic representation of some simple trees: 
left, 1 = 1, k = 2, and N = 2; right, 1 = k = 2 and N = 3. 

It is instructive to discuss the situation 1 = 1 and 
N = 2. This system is schematically drawn in figure A 1 
(left). The probability that the first segment is open is 
equal to po.  For the second segment, the probability that 
we select trial segment 1 is equal to 

in which pi is the probability that segment i is open. The 
probability of generating the whole chain (segments 0 , l )  
then equals 

9 = POQ. (A 3) 

When the number of trial segments for the second seg- 
ment is equal to k the number of terms in this equation 
will be equal to 2k-'. For example, for k = 3 the prob- 
ability of selecting trial segment 1 is 
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Table A 1. Recursive Fortran90 function (F)  to compute the 
probability to  select direction 1 from k directions (see 
equations (A 2) and (A4)j. The probability that direction 
i is open is equal to P (  i) . This function should be called 
with N =  k and N o r m  = 1. 

RecursiveDoublePrecisionFunctionF(P,N,Norrn) Result(Res) 
Implicit None 
Integer~,Norrn 
D o u b l e P r e c i s i o n P ( * )  

If(N.Eq.l) Then 
Res=P(l)/Dble(Norrn) 

Res=P(N)*F(P,N-l,Norm+l) 
Res=Res+ (l.OdO-P(N))*F(P,N-l,Norrn) 

Else 

Endif 

Return 
End Function F 

For arbitrary k it is possible to compute this function 
recursively, see table A I .  Note that, for hard core 
potentials, pi is either equal to 0 or 1. This means that 
for arbitrary k all terms except one will be equal to zero. 
The expression for the probability of selecting trial seg- 
ment 1 will be 

1 
Q = -  

m‘ 
in which m is the number of open directions including 
direction 1. I t  is straightforward to see that in this case 
the algorithm reduces to the standard RG algorithm of 
hard core potentials [12]. 

Let us now consider the case that we have to calculate 
the probability of generating a chain of length N = 3. 
This is different from the previous case only in the way 
we calculate the probabilities that parts of the tree are 
open. For example, consider a segment ( I )  with children 
2 and 3. Segment 2 has children 4 and 5 and segment 3 
has children 6 and 7 .  This situation is drawn schemati- 
cally in figure A 1 (right) and it corresponds to 1 = k = 2. 
Let us again use p l  for the probability that segment i is 
open. The probability of following the path I ,  2 , 4  along 
this tree is 

In this equation, ps  is the probability of growing seg- 
ment 4 successively from segment 2. The expression for 
p:L is similar to the previous expression: 

The physical meaning of p;  is the probability of growing 
either 6 or 7 starting from 3 .  This means that segment 3 
and at least 6 or 7 must be open 

For different chain and recoil lengths we simply have to 
use the previous expressions in a recursive way: (i) for a 
part of the tree that is part of the backbone, we have to 
calculate the probability that the backbone is followed 
(see table Al); and (ii) for a part of the tree that is not 
part of the backbone, we have to calculate the prob- 
ability that at  least one trial direction is open. This is 
of course equal to 1 minus the probability that none of 
the directions is open; see for example equation (A 8). 

A possible way to program this on a computer is to 
use a parent/child concept, in which every point of the 
tree has pointers to both its parent and its children. One 
can use the same recursive operators for a parent and all 
descendants of the parent. 

An important difference with the algorithm in section 
2.2 is that we have to extend all feelers up to length 1, 
even if a direction is closed. This means that we have to 
compute many more trial directions compared with the 
algorithm in section 2.2. Although it is possible to 
reduce the fraction of CPU time that is spent in the 
calculation of the energy of a trial segment [17, 181, 
this algorithm will always be computationally more 
expensive than the algorithm in section 2.2. In figure 
A2, we have plotted the efficiencies of the method 
described in this appendix and the method described 
in section 2.2 for N = M = 20 and p = 0.4. I t  is found 
that for a large recoil length and number of trial direc- 
tions the algorithm described in this section becomes less 
efficient. However, the method described in this 
appendix is still almost a factor of 5 faster than 
CBMC for the optimal simulation parameters. 

We found that although this algorithm is correct in 
principle, this method is quite difficult to program. 
Although every program with recursive functions can 
be transformed to a program without recursion, we 
found that this method is extremely difficult to program 
without this technique. Because of the lower efficiency 
and the complexity we do not recommend the use of this 
algorithm. However, there may be other problems where 
an approach like the one sketched in this appendix is 
useful. 

Appendix B 
Calculation of the chemical potential 

An important macroscopic quantity is the chemical 
potential, which can be calculated using Widom’s test 
particle method [21]. When the Rosenbluth scheme is 
used to grow a test chain, the expression for the excess 
chemical potential equals [7] 
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Figure A2. Efficiency (in arbi- 
trary units) as a function of 
the number of trial direc- 
tions k for a given recoil 
length 1 for the two differ- 
ent algorithms to compute 
the Rosenbluth weight 
(section 2.2 and the alter- 
native method of appendix 
A): N = M =20 and 
p = 0.4. Note that for 
CBMC, the number of 
trial directions is constant 
( f  = 10, k = 15). 

4 

3 t  s- 

2[ : 
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0 '  0 h I 
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k 

in which W+ is the normalized Rosenbluth factor for a 
test chain that is grown using CBMC, 

straightforward. Let us assume that the number of trial 
directions is equal to k .  We will have to integrate over all 
possible sets of subtrees ( t )  and sum over all possible 
choices of sets of open/closed directions (0)  and all 
possible choices ( j )  of the segment. For the average 
Rosenbluth factor, one can write 

(B2) 

One can prove that equation (BI) holds when a test 
chain is constructed using RG, in which equation (8) 
is used to compute the Rosenbluth weight. This proof 
is quite similar to the proof in [7], in which a similar 
relation is derived for CBMC. 

We will derive the expression for the insertion of one 
segment (i); the extension to a chain of N segments is 
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in which m is the number of open directions and pi is the 
probability that segment j is open. Using 

(2) Segment a + 1 is open, but it is not selected. This 
leads to a contribution 

1 
P(rwlt ,  0)  = - 

m 

i=a 

j= 1 

(3) Segment a +  1 is open and it is selected. This 
leads to a contribution 

exP[-Dua+ll x ( P I P 2 . . . P U + ( 1  - P l ) P 2 . . . P o + . ' .  

+( I  -P l ) ( l  -P2) . . . (1  - P u ) )  =exP[-Puu+!l. 

and 

we obtain 

Clearly, the sum of these three contributions is 

Let us now focus on the term 
.j=l 

which means that we have proved equation (B 9). How- 
ever, the labelling of all k trial segments in equation (B 6) 
is quite arbitrary. Therefore, we can write 

When k = 1 it is straightforward to see that this term 
equals exp [-pull. For k = 2, this term is 

P2 exp [-@.!I + PI exp [-Pu21 

+ (1  - P 2 )  exp [-Pull + (1  - PI 1 exp [-PUzl 

= exp [-Pull + exp [-Pu2]. (B 8) 

To prove that, for arbitrary k ,  

(W') = jdTP( t )  exp [-flu] 

in which Q(N, V ,  T )  is the canonical partition function 
and Q,d(N, V ,  T )  is the partition function of an isolated 
chain. It is trivial to see that this expression ultimately 
leads to equation (B 1). 

We have calculated the excess chemical potential of a 
chain of length N in a solvent of monomers (N = 1) at 
T = 2.0 and various densities using test particles. The 
test chains were grown using either CBMC or RG. 
The results are presented in figure B1. In all simulations, 
we have used the same number of trial moves and par- 
ticle insertions (2.5 x lo6 for p = 0.2 and 1.25 x lo7 for 
p = 0.4). As expected, we obtain the same excess chemi- 
cal potential for both RG and CBMC. The excess 
chemical potential is an almost linear function of the 

i= k 

we will use induction. Suppose that this equation is valid 
for k = a, for the correct expression for k = u + 1 there 
are three contributions. 

(1) Segment a + 1 is closed. This leads to a contribu- 
tion 
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Figure B 1. Excess chemical 
potential (pLex) of a chain 
of length N in a solvent 
of N = 1 at T = 2.0 calcu- 
lated using either RG or 
CBMC. Left: p = 0.2, 
right: p = 0.4. 
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chain length [22]. Furthermore, the error in the estimate 
of the excess chemical potential as calculated by block 
averages [23] is quite large for high densities and large 
chain lengths. At lower densities, RG seems to perform 
slightly better than CBMC. 

There are several reasons why calculating the chemi- 
cal potential using RG is more complicated than using 
CBMC. Let us consider a discrete system of which the 
phase space consists of only one point with Boltzmann 
factor a. When CBMC is used to calculate the chemical 
potential of this system, the average Rosenbluth weight 
(W') will be equal to a; because the phase space is 
discrete and there is only one point, the standard devi- 
ation in the estimate of (W') will be equal to zero. 
However, when RG is used, there is a certain probability 
p that this discrete position is open. When this position 
is open, there will be a contribution a l p ,  otherwise this 
contribution will be zero. It is straightforward to see 
that in this case the average Rosenbluth weight is 
equal to a as well, but when p # 1 we will have a bino- 
mial process in which the error in the estimate of (W') 
will be proportional to the inverse of the square-root of 
the number of attempts. When the number of discrete 
points in the phase space is larger than one, we can use 
the same analysis to show that the error in the estimate 
of (W') will always be larger for RG than for CBMC 
when pi # 1. The previous analysis suggests that stat- 
istical errors will be less when the probability that a 
segment is open is close to 1. However, when this prob- 
ability is exactly equal to one, the algorithm reduces to a 
completely random insertion of a chain molecule, 

in which U' is the energy of the test chain. For high 
densities and long chains, complete random insertion 
of test particles leads to very poor statistics because 
nearly always a position with an overlap with another 
segment is generated [7]. When pi is close to 0, most of 

the trial chains will be found closed and no statistics at 
all will be collected. Therefore, one needs to fine-tune 
the stochastic rule to decide what is open or closed. A 
possible choice would be a modification of the Metro- 
polis acceptance/rejection rule 

pi = min(1,exp [-,/3*(ui + u* ) ] ) ,  (B 16) 

in which ,/3* and u* are constants that can be optimized 
to obtain good accuracy for the estimate of peX. This 
function is plotted in figure B2 for a LJ potential. It 
turns out that /3* makes the transition from p = 0 to 
p = 1 larger while u* is responsible for a shift of this 
transition. We have tested the use of a modified sto- 
chastic rule (equation (B 16)) and we found that this 
leads to only a marginal improvement in the error in 
the estimate of pex for p = 0.2 and p = 0.4. Also, a full 
optimization of ,/3* and u* is computationally too expen- 
sive compared with the improvement in the estimate of 
p e x .  For higher densities and longer chain lengths, how- 
ever, we found that such an optimization is necessary to 
obtain a good estimate of pex. 

Another reason why RG does not perform too well in 
calculating the chemical potential is that the quality of a 
trial direction is reduced to a binomial process: a direc- 
tion is either open or closed. This is completely different 
for CBMC, where more detailed information about the 
trial directions (in this case the Boltzmann factor) is 
collected (see equation (B2)). For a dynamic MC simu- 
lation, the lack of detailed information about the sur- 
rounding of a segment does not create any problems. 
For test particles however, this is different because, 
ideally, one would like to sample all possible trial direc- 
tions of the test chain [7]. 

Therefore, we conclude that other algorithms, such as 
the Rosenbluth scheme, but even more the pruned- 
enriched Rosenbluth method by Grassberger [3] are 
more suitable (i.e., more efficient) for computing the 
excess chemical potential. 

Figure B2. Probability that a 
segment is open as a func- 
tion of the inter-atomic 
distance for the LJ poten- 
tial (rcur = 2.5 ,  D = 1 and 
E = 1) according to equa- 
tion (B 16): left: u* = 0; 
right: /3* = 0.1. 
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Appendix C 
Parallelization 

With the increasing availability of parallel computers, 
interest in parallel MC algorithms is growing. Esselink 
rr a/. [ 191 have designed a parallel CBMC algorithm that 
has been optimized and tested on a parallel computer by 
Vlugt [18]. It was found that, although the construction 
of a single chain cannot be parallelized efficiently on a 
large number of processors, one can construct multiple 
chains instead. This task can be divided readily among 
processors. One of these chains is selected as the new 
configuration, while the remaining chains are thrown 
away. This introduces a bias is the generation of the 
new configuration, which can be removed exactly by a 
modification of the acceptance/rejection rule. It was 
found that for a typical simulation this algorithm 
works quite well on up to 16 processors on various 
parallel computers [ 181. 

In such a multiple chain algorithm, it is essential to 
have a good load balance. This means that every pro- 
cessor is doing roughly the same amount of work. 
Therefore, the distribution in CPU time for the con- 
struction of a chain should be as small as possible. In 
figure C1, we have plotted the fraction of chains that is 
grown successfully as a function of the maximum chain 
length that has been attained during the construction of 
a chain for various chain lengths (systems 1, 3,  5 of 
section 3.2). Note that in CBMC, a chain is discarded, 
for numerical reasons, only when the Rosenbluth weight 
is of the order of the machine accuracy of the computer 

1.0 

0.8 

0.6 
c 

0.4 

0.2 

0.0' ' I ' I .  I ' I '  

0 10 20 30 40 
Nsucc 

Figure C1. Fraction of chains q that are successfully grown 
up to length N,,,, as a function of N,,,, for p = 0.4 and 
T = 5.0. For RG we have used f = 5 ,  1 = 5 ,  and k = 3, 
and for CBMC we have used f = k = 10. 

(roughly 2 x for the computer used in this study). 
It turns out that the distribution in CPU time is much 
wider for RG than for CBMC. The fact that in RG 
many configurations can be thrown away before the 
complete chain is constructed is one of the main reasons 
why RG is more efficient than CBMC. However, it also 
implies that multiple chain algorithms cannot be paral- 
lelized efficiently, which makes RG less suitable for par- 
allelization. 
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