6 research outputs found

    A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder

    Get PDF
    Deep brain stimulation (DBS) has been proposed for severe, chronic, treatment-refractory obsessive-compulsive disorder (OCD) patients. Although serious adverse events can occur, only a few studies report on the safety profile of DBS for psychiatric disorders. In a prospective, open-label, interventional multi-center study, we examined the safety and efficacy of electrical stimulation in 30 patients with DBS electrodes bilaterally implanted in the anterior limb of the internal capsule. Safety, efficacy, and functionality assessments were performed at 3, 6, and 12 months post implant. An independent Clinical Events Committee classified and coded all adverse events (AEs) according to EN ISO14155:2011. All patients experienced AEs (195 in total), with the majority of these being mild (52% of all AEs) or moderate (37%). Median time to resolution was 22 days for all AEs and the etiology with the highest AE incidence was 'programming/stimulation' (in 26 patients), followed by 'New illness, injury, condition' (13 patients) and 'pre-existing condition, worsening or exacerbation' (11 patients). Sixteen patients reported a total of 36 serious AEs (eight of them in one single patient), mainly transient anxiety and affective symptoms worsening (20 SAEs). Regarding efficacy measures, Y-BOCS reduction was 42% at 12 months and the responder rate was 60%. Improvements in GAF, CGI, and EuroQol-5D index scores were also observed. In sum, although some severe AEs occurred, most AEs were mild or moderate, transient and related to programming/stimulation and tended to resolve by adjustment of stimulation. In a severely treatment-resistant population, this open-label study supports that the potential benefits outweigh the potential risks of DBS

    BMC Public Health

    Get PDF
    BACKGROUND: Connected health devices and applications (referred to hereafter as "SDApps" - Smart devices and applications) are being portrayed as a new way for prevention, with the promise of accessibility, effectiveness and personalization. Many effectiveness evaluations (experimental designs) with strong internal validity exist. While effectiveness does appear to vary, the mechanisms used by these devices have not yet been thoroughly investigated. This article seeks to unpack this black box, and describes the process of elaboration of an intervention theory for healthy eating and physical activity SDApps. It includes a set of requirements relative to their impact on social health inequalities. METHODS: To build this theory, we drew on theory-driven approaches and in particular on the theory of change (ToC) method. To this end, we developed a cumulative and iterative process combining scientific data from the literature with knowledge from experts (researchers and practitioners) and from patients or users. It was a 3-step process, as follows: 1 - identifying the evidence base; 2 - developing the theory through design intervention and creating realistic expectations, including in our case specific work on social health inequalities (SHIs); 3 - modeling process and outcome. RESULTS: We produced an evidence-based theory according to the ToC model, based on scientific evidence and knowledge from experts and users. It sets out a causal pathway leveraging 11 key mechanisms - theoretical domains - with which 50 behavior change techniques can be used towards 3 ultimate goals: Capacity, Opportunity, Motivation - Behavior (COM-B). Furthermore, the theory specifically integrates requirements relative to the impact on SHIs. CONCLUSIONS: This theory is an aid to SDAapp design and evaluation and it can be used to consider the question of the possible impact of SDApps on the increase in inequalities. Firstly, it enables developers to adopt a more overarching and thorough approach to supporting behavior change, and secondly it encourages comprehensive and contributive evaluations of existing SDApps. Lastly, it allows health inequalities to be fully considered

    A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder.

    No full text
    Deep brain stimulation (DBS) has been proposed for severe, chronic, treatment-refractory obsessive-compulsive disorder (OCD) patients. Although serious adverse events can occur, only a few studies report on the safety profile of DBS for psychiatric disorders. In a prospective, open-label, interventional multi-center study, we examined the safety and efficacy of electrical stimulation in 30 patients with DBS electrodes bilaterally implanted in the anterior limb of the internal capsule. Safety, efficacy, and functionality assessments were performed at 3, 6, and 12 months post implant. An independent Clinical Events Committee classified and coded all adverse events (AEs) according to EN ISO14155:2011. All patients experienced AEs (195 in total), with the majority of these being mild (52% of all AEs) or moderate (37%). Median time to resolution was 22 days for all AEs and the etiology with the highest AE incidence was 'programming/stimulation' (in 26 patients), followed by 'New illness, injury, condition' (13 patients) and 'pre-existing condition, worsening or exacerbation' (11 patients). Sixteen patients reported a total of 36 serious AEs (eight of them in one single patient), mainly transient anxiety and affective symptoms worsening (20 SAEs). Regarding efficacy measures, Y-BOCS reduction was 42% at 12 months and the responder rate was 60%. Improvements in GAF, CGI, and EuroQol-5D index scores were also observed. In sum, although some severe AEs occurred, most AEs were mild or moderate, transient and related to programming/stimulation and tended to resolve by adjustment of stimulation. In a severely treatment-resistant population, this open-label study supports that the potential benefits outweigh the potential risks of DBS.status: Published onlin

    A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder.

    No full text
    Deep brain stimulation (DBS) has been proposed for severe, chronic, treatment-refractory obsessive-compulsive disorder (OCD) patients. Although serious adverse events can occur, only a few studies report on the safety profile of DBS for psychiatric disorders. In a prospective, open-label, interventional multi-center study, we examined the safety and efficacy of electrical stimulation in 30 patients with DBS electrodes bilaterally implanted in the anterior limb of the internal capsule. Safety, efficacy, and functionality assessments were performed at 3, 6, and 12 months post implant. An independent Clinical Events Committee classified and coded all adverse events (AEs) according to EN ISO14155:2011. All patients experienced AEs (195 in total), with the majority of these being mild (52% of all AEs) or moderate (37%). Median time to resolution was 22 days for all AEs and the etiology with the highest AE incidence was 'programming/stimulation' (in 26 patients), followed by 'New illness, injury, condition' (13 patients) and 'pre-existing condition, worsening or exacerbation' (11 patients). Sixteen patients reported a total of 36 serious AEs (eight of them in one single patient), mainly transient anxiety and affective symptoms worsening (20 SAEs). Regarding efficacy measures, Y-BOCS reduction was 42% at 12 months and the responder rate was 60%. Improvements in GAF, CGI, and EuroQol-5D index scores were also observed. In sum, although some severe AEs occurred, most AEs were mild or moderate, transient and related to programming/stimulation and tended to resolve by adjustment of stimulation. In a severely treatment-resistant population, this open-label study supports that the potential benefits outweigh the potential risks of DBS
    corecore