375 research outputs found

    PRIME: a probabilistic neural network approach to solar wind propagation from L1

    Get PDF
    Introduction: For the last several decades, continuous monitoring of the solar wind has been carried out by spacecraft at the first Earth-Sun Lagrange point (L1). Due to computational expense or model limitations, those data often must be propagated to some point closer to the Earth in order to be usable by those studying the interaction between Earth’s magnetosphere and the solar wind. The current most widely used tool to propagate measurements from L1 (roughly 235 RE upstream) to Earth is the planar propagation method, which includes a number of known limitations. Motivated by these limitations, this study introduces a new algorithm called the Probabilistic Regressor for Input to the Magnetosphere Estimation (PRIME).Methods: PRIME is based on a novel probabilistic recurrent neural network architecture, and is capable of incorporating solar wind time history from L1 monitors to generate predictions of near-Earth solar wind as well as estimate uncertainties for those predictions.Results: A statistical validation shows PRIME’s predictions better match MMS magnetic field and plasma measurements just upstream of the bow shock than measurements from Wind propagated to MMS with a minimum variance analysis-based planar propagation technique. PRIME’s continuous rank probability score (CRPS) is 0.214σ on average across all parameters, compared to the minimum variance algorithm’s CRPS of 0.350σ. PRIME’s performance improvement over minimum variance is dramatic in plasma parameters, with an improvement in CRPS from 2.155 cm−3 to 0.850 cm−3 in number density and 16.15 km/s to 9.226 km/s in flow velocity VX GSE.Discussion: Case studies of particularly difficult to predict or extreme conditions are presented to illustrate the benefits and limitations of PRIME. PRIME’s uncertainties are shown to provide reasonably reliable predictions of the probability of particular solar wind conditions occurring.Conclusion: PRIME offers a simple solution to common limitations of solar wind propagation algorithms by generating accurate predictions of the solar wind at Earth with physically meaningful uncertainties attached

    Liquid biopsy for non-invasive monitoring of patients with kidney transplants

    Get PDF
    The current tools for diagnosing and monitoring native kidney diseases as well as allograft rejection in transplant patients are suboptimal. Creatinine and proteinuria are non-specific and poorly sensitive markers of injury. Tissue biopsies are invasive and carry potential complications. In this article, we overview the different techniques of liquid biopsy and discuss their potential to improve patients’ kidney health. Several diagnostic, predictive, and prognostic biomarkers have been identified with the ability to detect and monitor the activity of native kidney diseases as well as early and chronic allograft rejection, such as donor-derived cell-free DNA, exosomes, messenger RNA/microsomal RNA, proteomics, and so on. While the results are encouraging, additional research is still needed as no biomarker appears to be perfect for a routine application in clinical practice. Despite promising advancements in biomarkers, the most important issue is the lack of standardized pre-analytical criteria. Large validation studies and uniformed standard operating procedures are required to move the findings from bench to bedside. Establishing consortia such as the Liquid Biopsy Consortium for Kidney Diseases can help expedite the research process, allow large studies to establish standardized procedures, and improve the management and outcomes of kidney diseases and of kidney transplant recipients

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.010137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.710157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    The Academic Resilience Scale (ARS-30) : a new multidimensional construct measure

    Get PDF
    Resilience is a psychological construct observed in some individuals that accounts for success despite adversity. Resilience reflects the ability to bounce back, to beat the odds and is considered an asset in human characteristic terms. Academic resilience contextualises the resilience construct and reflects an increased likelihood of educational success despite adversity. The paper provides an account of the development of a new multidimensional construct measure of academic resilience. The 30 item Academic Resilience Scale (ARS-30) explores process—as opposed to outcome—aspects of resilience, providing a measure of academic resilience based on students’ specific adaptive cognitive-affective and behavioural responses to academic adversity. Findings from the study involving a sample of undergraduate students (N=532) demonstrate that the ARS-30 has good internal reliability and construct validity. It is suggested that a measure such as the ARS-30, which is based on adaptive responses, aligns more closely with the conceptualisation of resilience and provides a valid construct measure of academic resilience relevant for research and practice in university student populations

    Collusion, Profitability and Welfare: Theory and Evidence

    Get PDF
    In a differentiated oligopoly model with free entry, the static welfare loss from collusion is larger the lower the entry cost, the larger the market size and the higher the degree of product differentiation. The cartel overcharge is larger the lower the entry cost and the larger the market size, and is independent of the degree of product differentiation. These theoretical results are consistent with evidence from a natural experiment of policy reform, the introduction of cartel law in the UK in the late 1950s. Price-cost margins declined after the breakdown of cartels in low-capital and larger-sized industries relative to capital-intensive and smaller-sized ones. There is weaker evidence of a fall in price-cost margins in consumer good and advertising-intensive relative to producer good and low-advertising industries. Crucially, these effects are not observed for industries not affected by the cartel law. A comparison of these findings with evidence on the incidence of collusion suggests that the welfare loss from collusive pricing may often be smaller in industries where cartels tend to form than in those where collusion is more difficult to sustain

    Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies

    Get PDF
    The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer’s disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic–ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD
    corecore