8 research outputs found

    Bauxite residue (Red mud) as a pulverised fuel ash substitute in the manufacture of lightweight aggregate

    Get PDF
    This study looked at the potential of bauxite residue or red mud to be used in the manufacture of lightweight aggregate in replacement of pulverised fuel ash (PFA), commonly used as a way of recycling problematic wastes. The percentage replacements of red mud with PFA were as follows: 25, 31, 38, 44 and 50%. These were blended in a mix with waste excavated clay and sewage sludge – all from the Chongqing municipality in China. Lightweight pellets were produced using a Trefoil rotary kiln and were sintered to 1200 °C. Results showed that 44 % bauxite residue replacement produced lightweight pellets with the highest compressive strength, highest density and largest water holding capacity. This would be expected in materials with a low level of silicates, which causes insufficient glass phase viscosity and therefore poor bloating during firing; producing an aggregate with a higher density but with open pores that allowed for larger water absorption. All ratios of red mud aggregates were significantly reduced in pH after firing to around pH 8, and this reduced the leachability of the aggregates to levels below those set by the European landfill directive (2003/33/EC)

    A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems

    Get PDF
    Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems (RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and challenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, transport systems and human–nature interactions. The prioritized opportunities were primarily centred on the deployment of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important developments early is essential if we are to avoid detrimental consequences but fully realize the benefits

    Are microbial communities in green roof substrates comparable to those in post-industrial sites?—a preliminary study.

    No full text
    Green roofs have been implemented on new buildings as a tool to mitigate the loss of post-industrial or brownfield land. For this to be successful, the roofs must be designed appropriately; that is with the right growing media, suitable substrate depth, similar vegetation and with a comparable soil microbial community for a healthy rhizosphere. This study compared soil microbial communities (determined using phospholipid fatty acid or PLFA analysis) of two extensive green roofs and two post-industrial sites in Greater London. It was found that green roof rootzones constructed using engineered growing media are not depauperate, but can have an abundant soil microbial community that in some cases may be more diverse and numerous than communities found in brownfield areas. In this preliminary study, one green roof supported abundant soil microbial communities that were dominated by gram negative and aerobic bacteria, whilst fungal abundance was similar across all sites analysed. Furthermore, ratios of fungal: bacterial PLFA’s were larger from post-industrial sites but overall were consistent with bacterial dominated soils typical of early successional habitats

    The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts

    No full text

    Global effects of land use on local terrestrial biodiversity

    Get PDF
    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text
    corecore