83 research outputs found

    High School Students as Citizen Scientists to Decrease Radon Exposure

    Get PDF
    Residents in rural Kentucky (KY) and suburban Ohio (OH) expressed concerns about radon exposure and lung cancer. Although 85% of lung cancer cases are caused by tobacco smoke, radon exposure accounts for 10–15% of lung cancer cases. Academic and community members from the University of KY and the University of Cincinnati developed and pilot-tested a family-centered, youth-engaged home radon testing toolkit. The radon toolkit included radon information, and how to test, interpret, and report back findings. We educated youth as citizen scientists and their teachers in human subjects protection and home radon testing using the toolkit in the classroom. Youth citizen scientists explained the study to their parents and obtained informed consent. One hundred students were trained in human subjects protection, 27 had parental permission to be citizen scientists, and 18 homeowners completed surveys. Radon values ranged from \u3c 14.8 Bq/m3 to 277.5 Bq/m3. Youth were interested and engaged in citizen science and this family-centered, school-based project provided a unique opportunity to further the healthy housing and quality education components of the Sustainable Development Goals for 2030. Further research is needed to test the impact of student-led, family-centered citizen science projects in environmental health as part of school curricula

    Select Biomarkers on the Day of Anterior Cruciate Ligament Reconstruction Predict Poor Patient-Reported Outcomes at 2-Year Follow-Up: A Pilot Study

    Get PDF
    Background. The majority of patients develop posttraumatic osteoarthritis within 15 years of anterior cruciate ligament (ACL) injury. Inflammatory and chondrodegenerative biomarkers have been associated with both pain and the progression of osteoarthritis; however, it remains unclear if preoperative biomarkers differ for patients with inferior postoperative outcomes. Hypothesis/Purpose. The purpose of this pilot study was to compare biomarkers collected on the day of ACL reconstruction between patients with good or poor 2-year postoperative outcomes. We hypothesized that inflammatory cytokines and chondrodegenerative biomarker concentrations would be significantly greater in patients with poorer outcomes. Study Design. Prospective cohort design. Methods. 22 patients (9 females, 13 males; age = 19.5 ± 4.1 years; BMI = 24.1 ± 3.6 kg/m2) previously enrolled in a randomized trial evaluating early anti-inflammatory treatment after ACL injury. Biomarkers of chondrodegeneration and inflammation were assessed from synovial fluid (sf) samples collected on the day of ACL reconstruction. Participants completed Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) questionnaires two years following surgery. Patients were then categorized based on whether their KOOS Quality of Life (QOL) score surpassed the Patient Acceptable Symptom State (PASS) threshold of 62.5 points or the IKDC PASS threshold of 75.9 points. Results. Patients that failed to reach the QOL PASS threshold after surgery (n = 6, 27%) had significantly greater sf interleukin-1 alpha (IL-1α; p = 0.004), IL-1 receptor antagonist (IL-1ra; p = 0.03), and matrix metalloproteinase-9 (MMP-9; p = 0.01) concentrations on the day of surgery. Patients that failed to reach the IKDC PASS threshold (n = 9, 41%) had significantly greater sf IL-1α (p = 0.02). Conclusion. These pilot data suggest that initial biochemical changes after injury may be an indicator of poor outcomes that are not mitigated by surgical stabilization alone. Biological adjuvant treatment in addition to ACL reconstruction may be beneficial; however, these data should be used for hypothesis generation and more definitive randomized clinical trials are necessary

    SN 2009bb: a Peculiar Broad-Lined Type Ic Supernova

    Get PDF
    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudo-bolometric light curve of SN 2009bb suggests that 4.1+-1.9 Msun of material was ejected with 0.22 +-0.06 Msun of it being 56Ni. The resulting kinetic energy is 1.8+-0.7x10^52 erg. This, together with an absolute peak magnitude of MB=-18.36+-0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission, and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for GRBs, we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of gamma-ray instruments.Comment: Accepted for publication in Ap

    The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae

    Full text link
    Astronomical observations suggest that today's Universe is dominated by a dark energy of unknown physical origin. One of the most notable consequences in many models is that dark energy should cause the expansion of the Universe to accelerate: but the expansion rate as a function of time has proven very difficult to measure directly. We present a new determination of the cosmic expansion history by combining distant supernovae observations with a geometrical analysis of large-scale galaxy clustering within the WiggleZ Dark Energy Survey, using the Alcock-Paczynski test to measure the distortion of standard spheres. Our result constitutes a robust and non-parametric measurement of the Hubble expansion rate as a function of time, which we measure with 10-15% precision in four bins within the redshift range 0.1 < z < 0.9. We demonstrate that the cosmic expansion is accelerating, in a manner independent of the parameterization of the cosmological model (although assuming cosmic homogeneity in our data analysis). Furthermore, we find that this expansion history is consistent with a cosmological-constant dark energy.Comment: 13 pages, 7 figures, accepted for publication by MNRA

    The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    Get PDF
    We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 \pm 8 Mpc/h at z~0.2, 70 \pm 5 Mpc/h at z~0.4, 81 \pm 5 Mpc/h at z~0.6, and 75 \pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.Comment: 21 pages, 16 figures, accepted for publication in MNRA

    Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (<it>Triticum aestivum</it>, genomes AABBDD) and wild tetraploid wheat (<it>Triticum turgidum </it>ssp. <it>dicoccoides</it>, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat.</p> <p>Results</p> <p>Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, <it>T. urartu</it>, <it>Aegilops speltoides</it>, and <it>Ae. tauschii</it>, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an <it>Ae. tauschii </it>genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed.</p> <p>Conclusions</p> <p>In a young polyploid, exemplified by <it>T. aestivum</it>, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in <it>T. aestivum </it>is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.</p

    The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1

    Get PDF
    We perform a joint determination of the distance-redshift relation and cosmic expansion rate at redshifts z = 0.44, 0.6 and 0.73 by combining measurements of the baryon acoustic peak and Alcock-Paczynski distortion from galaxy clustering in the WiggleZ Dark Energy Survey, using a large ensemble of mock catalogues to calculate the covariance between the measurements. We find that D_A(z) = (1205 +/- 114, 1380 +/- 95, 1534 +/- 107) Mpc and H(z) = (82.6 +/- 7.8, 87.9 +/- 6.1, 97.3 +/- 7.0) km/s/Mpc at these three redshifts. Further combining our results with other baryon acoustic oscillation and distant supernovae datasets, we use a Monte Carlo Markov Chain technique to determine the evolution of the Hubble parameter H(z) as a stepwise function in 9 redshift bins of width dz = 0.1, also marginalizing over the spatial curvature. Our measurements of H(z), which have precision better than 7% in most redshift bins, are consistent with the expansion history predicted by a cosmological-constant dark-energy model, in which the expansion rate accelerates at redshift z < 0.7.Comment: 11 pages, 11 figures, accepted for publication in MNRA
    corecore