1,855 research outputs found

    Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension

    Get PDF
    Both the Arp2/3 complex and cofilin are believed to be important for the generation of protrusive force at the leading edge; however, their relative contributions have not been explored in vivo. Our results with living cells show that cofilin enters the leading edge immediately before the start of lamellipod extension, slightly earlier than Arp2/3, which begins to be recruited slightly later as the lamellipod is extended. Blocking either the Arp2/3 complex or cofilin function in cells results in failure to extend broad lamellipods and inhibits free barbed ends, suggesting that neither factor on its own can support actin polymerization-mediated protrusion in response to growth factor stimulation. High-resolution analysis of the actin network at the leading edge supports the idea that both the severing activity of cofilin and the specific branching activity of the Arp2/3 complex are essential for lamellipod protrusion. These results are the first to document the relative contributions of cofilin and Arp2/3 complex in vivo and indicate that cofilin begins to initiate the generation of free barbed ends that act in synergy with the Arp2/3 complex to create a large burst in nucleation activity

    Metastasis: tumor cells becoming MENAcing

    Get PDF
    During breast cancer metastasis cells emigrate from the primary tumor to the bloodstream, and this carries them to distant sites where they infiltrate and sometimes form metastases within target organs. These cells must penetrate the dense extracellular matrix comprising the basement membrane of the mammary duct/acinus and migrate toward blood and lymphatic vessels, processes that mammary tumor cells execute primarily using epidermal growth factor (EGF)-dependent protrusive and migratory activity. Here, we focus on how the actin regulatory protein Mena affects EGF-elicited movement, invasion and metastasis. Recent findings indicate that, in invasive migratory tumor cells, Mena isoforms that endow heightened sensitivity to EGF and increased protrusive and migratory abilities are upregulated, whereas other isoforms are selectively downregulated. This change in Mena isoform expression enables tumor cells to invade in response to otherwise benign EGF stimulus levels and could offer an opportunity to identify metastatic risk in patients.National Institutes of Health (U.S.) (Grant GM58801)National Cancer Institute (U.S.). Integrative Cancer Biology Program (Grant 1-U54-CA11296)Massachusetts Institute of Technology. Ludwig Center for Metastasis Researc

    Visualization of Actin Polymerization in Invasive Structures of Macrophages and Carcinoma Cells Using Photoconvertible Ī²-Actin ā€“ Dendra2 Fusion Proteins

    Get PDF
    Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable Ī²-actin - Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of Ī²-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells

    Dendra2 Photoswitching through the Mammary Imaging Window

    Get PDF
    In the last decade, intravital microscopy of breast tumors in mice and rats at single-cell resolution1-4 has resulted in important insights into mechanisms of metastatic behavior such as migration, invasion and intravasation of tumor cells5, 6, angiogenesis3 and immune cells response7-9. We have recently reported a technique to image orthotopic mammary carcinomas over multiple intravital imaging sessions in living mice10. For this, we have developed a Mammary Imaging Window (MIW) and optimized imaging parameters for Dendra211 photoswitching and imaging in vivo. Here, we describe the protocol for the manufacturing of MIW, insertion of the MIW on top of a tumor and imaging of the Dendra2- labeled tumor cells using a custom built imaging box. This protocol can be used to image the metastatic behavior of tumor cells in distinct microenvironments in tumors and allows for long term imaging of blood vessels, tumor cells and host cells

    Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy

    Get PDF
    BACKGROUND: The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy. RESULTS: Here we describe a method for the simultaneous imaging, by multiphoton microscopy, of Green Fluorescent Protein, Cyan Fluorescent Protein and collagen in vivo in living tumors. This novel method enables: 1) the simultaneous visualization of overall cell shape and sub-cellular structures such as the plasma membrane or proteins of interest in cells inside living animals, 2) direct comparison of the behavior of single cells from different cell lines in the same microenvironment in vivo. CONCLUSION: Using this multi-fluor, multiphoton technique, we demonstrate that motility and metastatic differences between carcinoma cells of differing metastatic potential can be imaged in the same animal simultaneously at sub-cellular resolution

    Visualization of mRNA translation in living cells

    Get PDF
    The role of mRNA localization is presumably to effect cell asymmetry by synthesizing proteins in specific cellular compartments. However, protein synthesis has never been directly demonstrated at the sites of mRNA localization. To address this, we developed a live cell method for imaging translation of Ī²-actin mRNA. Constructs coding for Ī²-actin, containing tetracysteine motifs, were transfected into C2C12 cells, and sites of nascent polypeptide chains were detected using the biarsenial dyes FlAsH and ReAsH, a technique we call translation site imaging. These sites colocalized with Ī²-actin mRNA at the leading edge of motile myoblasts, confirming that they were translating. Ī²-Actin mRNA lacking the sequence (zipcode) that localizes the mRNA to the cell periphery, eliminated the translation there. A pulse-chase experiment on living cells showed that the recently synthesized protein correlated spatially with the sites of its translation. Additionally, localization of Ī²-actin mRNA and translation activity was enhanced at cell contacts and facilitated the formation of intercellular junctions
    • ā€¦
    corecore