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In Brief

Tumor-associated macrophages (TAMs)

are essential for metastasis. Arwert et al.

show that, following extravasation,

monocytes initially become motile TAMs.

Tumor-derived TGF-b then induces

CXCR4 on TAMs, stimulating them to

migrate toward CXCL12-expressing

perivascular fibroblasts. Once adjacent to

blood vessels, TAMs differentiate into

metastasis-assisting perivascular TAMs.
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SUMMARY

Tumor-associated macrophages (TAMs) are critical
for tumor metastasis. Two TAM subsets support
cancer cell intravasation: migratory macrophages
guide cancer cells toward blood vessels, where
sessile perivascular macrophages assist their entry
into the blood. However, little is known about the
inter-relationship between these functionally distinct
TAMs or their possible inter-conversion. We show
that motile, streaming TAMs are newly arrived
monocytes, recruited via CCR2 signaling, that then
differentiate into the sessile perivascular macro-
phages. This unidirectional process is regulated by
CXCL12 and CXCR4. Cancer cells induce TGF-
b-dependent upregulation of CXCR4 in monocytes,
while CXCL12 expressed by perivascular fibroblasts
attracts thesemotile TAMs toward the blood vessels,
bringing motile cancer cells with them. Once on the
blood vessel, the migratory TAMs differentiate into
perivascular macrophages, promoting vascular leak-
iness and intravasation.

INTRODUCTION

The diverse functions performed by tumor-associated macro-

phages (TAMs) are attributed to their specialization into subtypes

(Broz et al., 2014; Franklin et al., 2014; Harney et al., 2015; Laoui

et al., 2014; Qian and Pollard, 2010), including anti-tumor pro-

inflammatoryM1macrophages and pro-tumor immune suppres-

sive or wound healing M2 macrophages. However, the diversity

of macrophage types in different tissues and cancers indicates

that this is an oversimplification (Lewis et al., 2016). Intravital

microscopy has revealed different TAM behaviors linked to their

location, including migration-associated streaming and perivas-

cular populations (Broz et al., 2014; Harney et al., 2015; Patsialou

et al., 2013; Engelhardt et al., 2012). Tumor cells migrating in

streams with TAMs move at higher speeds, in a more direct

route, and from greater distances toward blood vessels than

tumor cells migrating without TAMs (Leung et al., 2017; Patsialou

et al., 2013; Wyckoff et al., 2007). This behavior is enabled by a

paracrine loop involving colony-stimulating factor 1 (CSF1)

production by cancer cells, epidermal growth factor (EGF)

production by TAMs, and release of hepatocyte growth factor

(HGF) from endothelial cells (Leung et al., 2017; Patsialou et al.,

2009; Wyckoff et al., 2004, 2007). Perivascular macrophages

are found in structures called TMEM (tumor microenvironments

of metastasis), defined as a macrophage, a Mena (Mammalian

Enabled)-overexpressing tumor cell, and an endothelial cell in

direct contact (Harney et al., 2015; Pignatelli et al., 2014; Robin-

son et al., 2009; Rohan et al., 2014). TMEM are responsible for

vascular endothelial growth factor A (VEGFA)-driven transient

vascular leakiness and tumor cell intravasation and predict

distant metastatic disease in breast cancer patients (Harney

et al., 2015; Rohan et al., 2014; Sparano et al., 2017).

Despite these advances, the temporal aspects of macrophage

subtype specificationwithin primary tumors and the possibility of

inter-conversion among subtypes remain largely unexplored. To

learn more about these processes, we applied a range of tempo-

rally controlled perturbations of TAM populations in the MMTV-

PyMT mouse model of breast cancer (Lin et al., 2003).

RESULTS AND DISCUSSION

Monocyte Labeling Reveals Distinct Temporal and
Functional Properties of TAM Subsets
Clodronate liposomes target phagocytic cells and can deplete

monocyte and macrophages (Buiting et al., 1996; Qian et al.,

2011;Sunderkötter et al., 2004). In previous studies,weobserved

a reduction in circulating tumor cells (CTCs) in the PyMT model

after clodronate liposome treatment (Patsialou et al., 2013;Rous-

sos et al., 2011). We reconfirmed this, and to our surprise, the

reduction in CTCs persisted a week after clodronate treatment,

even though liposomes are cleared from the bloodwithinminutes

(FiguresS1AandS1B) (Buiting et al., 1996). Thesedata argue that

TAM function is perturbed for a considerable period following

transient clodronate treatment. We therefore set out to track

the dynamics of TAMs. To visualize TAMs, we used liposomes
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Figure 1. Newly Arriving Monocytes Become Perivascular Macrophages

(A) Flow cytometry quantification of the proportion of DiI+ CD11b+ cells in the tumor, measured different days after DiI liposome delivery.

(B) Immunofluorescence (IF) of a PyMT tumor at different days after DiI liposome injection, showing cells that ingested DiI (red), endothelial cells (green), and the

nuclear counter stain DAPI (blue). Scale bar is 10 mm. Inserts show magnification of one of the cells from the image.

(C) Quantification of IF staining showing the proportion of perivascular DiI+ cells.

(D) Still frames from Video S1 showing a DiI-labeled macrophage (red) among other macrophages (green) in a tumor (cyan) with collagen fibers (dark blue). The

arrowhead indicates a labeled monocyte in the blood stream.

(E) Quantification of EdU+ cells in blood smears at different times after EdU injection (n = 3).

(legend continued on next page)
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loaded with the fluorescent dye 10-dioctadecyl-3,3,3030-tetrame-

thylindocarbocyanine perchlorate (DiI) in tumor-bearing mice

(Figures S1A–S1H). As expected, the myeloid cells in the spleen

and liver were effectively labeled, but surprisingly, only 3% of

myeloid cells in PyMT tumors were labeled after 24 hr; however,

this number increased steadily over several days (Figures 1A and

S1C–S1F). Similar to the TAMs, monocytes found in tumor blood

vessels were not effectively labeled after 24 hr, but this increased

after 48 hr (Figure S1G). Staining of tumor sections revealed

similar results (Figures 1B and S1C). Moreover, at early time

points after DiI liposome injection, only 17% of the DiI+ cells

detected inside the tumor were in direct contact with a blood

vessel (Figures 1B, 1C, S1H, and S1I). In contrast, 10 days after

DiI treatment, 43% of DiI+ cells were in direct contact with blood

vessels (Figures 1Band1C) andmoreDiI+ cellswere foundwithin

the tumor compared with earlier time points (Figures S1H and

S1I). These data suggest monocyte lineages become labeled

with DiI liposomes in hematopoietic tissues and then transit via

the blood to tumors, where they gradually accumulate at perivas-

cular sites.

We tracked the behavior of recently arrived DiI-labeled mono-

cytes entering the tumor using MacGreen mice, engineered to

have EGFP+ve colony-stimulating factor 1 receptor (Csf1r)-

expressing macrophages (Sasmono et al., 2003). Imaging of

MacGreen PyMT mice revealed that non-perivascular TAMs

(>1 cell diameter from a blood vessel) were in collagen-rich stro-

mal areas at the tumor edge (purple outlines in Figure S2A), with

fewmacrophages found within tumor cell nests (yellow outline in

Figure S2A). Non-perivascular (stromal) TAMs exhibited a

different distribution of velocities compared to perivascular

TAMs, with a distinct population of EGFP+ stromal TAMs having

a higher velocity than that of any EGFP+ perivascular TAMs

(orange outlines in Figure S2A) (Figures S2A–S2C; Videos S1

and S2) (Harney et al., 2015), thus confirming their distinct

phenotype. Intravital imaging 48 hr after DiI injection into

MacGreen PyMT mice revealed DiI+ cells in the blood and low

numbers of DiI+/GFP+ cells within the tumor (Figure 1D;

Video S1). The fewDiI+/GFP+ TAMswere oftenmotile and found

in stromal areas (Videos S1 and S2), suggesting that newly

arriving monocytes are migratory and reside in stromal areas

rich in collagen and away from vessels. The inhibitory effect of

clodronate liposomes on intravasation after 48 hr is likely due

to depletion of recently arrived monocytes involved in streaming

migration (Figure S1B) (Patsialou et al., 2013).

Post-mitotic Monocytes Transition through Non-
perivascular Regions before Becoming Perivascular
TAMs
To track monocyte subtypes in a non-biased way, we used

5-ethynyl-20-deoxyuridine (EdU) to label rapidly turning over

bone marrow and splenic monocytes (Cheraghali et al., 1994).

We dosed tumor-bearing PyMT mice twice with EdU (2.5 hr

apart) and harvested tumors after 9 hr (Figure S2D). We did not

find any EdU+/CD45+ leukocytes in the blood stream (Figure 1E)

but saw clear EdU labeling of tumor cells and CD11b+ cells in

bone marrow (Figure S2E). Few CD68+ TAMs in the tumor

were EdU+ at the 9 hr time point (<0.1%), suggesting that

most CD68+ TAMs in the MMTV-PyMT system are non-prolifer-

ative and enabling us to track post-mitotic EdU+ monocytes

coming from the bone marrow or the spleen by immunofluores-

cence (IF) (Figure S2E). The number of EdU+ cells in the blood

peaked �48 hr, and almost no positive cells were observed by

96 hr, giving us a defined labeled population to track (Figure 1E).

After 3 days, EdU+/CD68+ TAMs were predominantly non-peri-

vascular (Figures 1F and 1G) (note the high levels of EdU labeling

of tumor cells). However, almost 40% of EdU+/CD68+ TAMs

were perivascular after 7 days (Figures 1F and 1G), and this

increased to �80% at 10 days. The continuing increase in

perivascular TAMs between 7 and 10 days, even though no

EdU-labeled monocytes were present in the blood, excludes

the possibility of perivascular TAMs being recruited directly

from the blood.

Transition from Monocyte into Functional Perivascular
TAM Requires 14 Days
To further test whether streaming TAMs transition into station-

ary perivascular TAMs, we transiently depleted all macrophages

using the macrophage Fas-induced apoptosis (MaFIA) mouse

model with orthotopically implanted PyMT tumors. In this

model, 5 days of treatment with the small molecule AP20187

(also known as the B/B homodimer) effectively removes

>90% of TAMs by apoptosis (Clifford et al., 2013; Harney

et al., 2015). We followed the repopulation of TAMs and their

spatial location by IF (Figures 2A and S3). Although the number

of CD68+ TAMs returned to control levels within 4 days after

termination of B/B treatment (Figures 2B, 2C, and S3), the

TAMs were rarely found in contact with blood vessels stained

with either CD31 or endomucin. It took up to 8 days after the

end of B/B treatment for the number of perivascular CD68+

TAMs return to control levels (Figures 2B and 2D). We addition-

ally characterized the expression of markers linked to

perivascular macrophage biology: VEGFA, CD206, and LYVE-

1 (Figures S4A–S4C and S5A–S5D) (Harney et al., 2015; Zeisel

et al., 2015). CD206 stained both perivascular and non-perivas-

cular TAMs at early time points and, similar to CD68, showed

the same transition to predominantly perivascular staining

later. We observed low levels of VEGFA staining in CD68+ cells,

but these showed a similar trend of accumulation in perivascu-

lar regions 7 days after B/B treatment. We did not observe

LYVE-1 staining in any TAMs (Figure S5D).

(F) Quantification of the location of the absolute number of CD68+/EdU+ TAMs, based on IF images as seen in (F) at different times after EdU administration. Per

time point, seven PyMT mice were analyzed and the number of CD68+/EdU+ cells analyzed were as follows: days 3–5, 84 cells; days 7–8, 63 cells; and days

10–14, 72 cells.

(G) IF imaging of PyMT tumor sections at different days after EdU injection. TAMs are stained for CD68 (green), blood vessels are stained for CD31 (cyan), with

DAPI (blue), and EdU+ nuclei indicate cells that were in S-phage at the time of EdU administration (red). Scale bar is 30 mm.

Chi-square analysis comparing perivascular versus non-perivascular macrophages. p < 0.0001. Data show mean ± SEM, and each data point represents an

individual animal (in A and C).

Cell Reports 23, 1239–1248, May 1, 2018 1241



Wealso tracked the recovery of perivascular TAM functionality

after B/B treatment by examining vessel leakiness and CTC

numbers. Restoration of vessel leakiness to control levels coin-

cided with the return of perivascular TAMs 8 days after the last

B/B treatment (Figures 2C, 2E, and 2F). However, the number

of CTCs took 14 days to recover after B/B treatment (Figure 2G),

indicating that perivascular leakiness is restored quickly after

TAMs contact the vasculature but that the reestablishment of

TAM functions that aid tumor cell intravasation takes longer.

CCR2 Is Required for Monocyte Recruitment
Having established that circulatingmonocytes transition through

a migratory phase into sessile perivascular macrophages, we

sought to identify the molecular regulators of these steps. We

tested whether CCR2, a receptor that mediates monocyte

chemotaxis, was required for the initial recruitment of mono-

cytes. A mixture of differentially labeled CCR2 wild-type and

�/� bone marrow-derived monocytes was adoptively trans-

ferred into tumor-bearing mice. The proportion of wild-type to

CCR2 �/� CD11b+ cells was tested 2 and 6 days later (Fig-

ure S6). CCR2 �/� cells were dramatically under-represented

in the tumor, despite their ability to colonize the bone marrow

(Figures 3A and 3B).

CXCR4 Signaling Regulates TAM Homing to Blood
Vessels
CXCR4 expression has been associated with TAM recruitment

and differentiation (Hughes et al., 2015). Therefore, we studied

the CXCR4 expression levels in CD68+ TAMs at different time

points after B/B treatment. Only a small percentage of CD68+

macrophages expressed CXCR4 4 days after arrival in the tumor

(Figures 3C and 3D), suggesting that CXCR4 is not important for

A

B

E F G

DC

Figure 2. TAM Numbers Quickly Recover after Depletion but Are Initially Non-perivascular and Differentiate into Functional Perivascular

TAMs over Time

(A) Schematic overview of experiments.

(B) IF imaging of PyMT tumor sections at different days after final B/B treatment. Orange arrows show non-perivascular TAMs, while white arrows show peri-

vascular TAMs. TAMs are stained for CD68 (green), blood vessels are stained for CD31 (red), and nuclei are stained with DAPI (blue). Scale bar is 20 mm.

(C andD) Quantification of the number of CD68-positive cells found in the tumor tissue (C) and their location in relation to the vasculature (D) at different time points

after final B/B treatment.

(E) IF imaging of orthotopic PyMT tumor sections at different days after final B/B treatment. Blood vessels are stained with streptavidin against CD31-biotin

injected 5 min before sacrifice (green) and dextran (red), and nuclei are stained with DAPI (blue). Scale bar is 20 mm.

(F and G) Quantification of extravascular 155 kDa dextran TMR as a measurement of vascular leakiness (F) and number of CTCs found per milliliter of blood (G)

different days after the last B/B injection.

Data show mean ± SEM, and each data point represents an individual animal (in C, D, F, and G).
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their initial recruitment. To test whether the CXCR4/CXCL12 axis

is required for migratory macrophages to become functional

perivascular TAMs, we used the CXCR4 antagonist AMD3100.

We depleted TAMs with B/B treatment, followed by a 7-day,

twice-daily AMD3100 treatment during the recovery phase (Fig-

ure 3E). As previously noted, CXCR4 blockade reduced the

vascular area in tumors (Figures 3F and 3G) (Hughes et al.,

2015), but the number of CD68+ TAMs was similar to controls

(Figures 3F and 3H). The percentage of TAMs directly interacting

with blood vessels was greatly reduced in the AMD3100-treated

tumors (Figures 3F and 3I), and this correlated with a reduction in

vascular leakiness (Figures 3J and 3K).

The data outlined earlier establish CXCR4/CXCL12 signaling

in directing TAMs toward the blood vessels; however, they do

not explain what upregulates CXCR4 or identify the source of

CXCL12. We tested whether tumor-derived factors could upre-

gulate CXCR4 by co-culturing bone marrow-derived macro-

phages (BMMs) with PyMT cancer cells. This co-culture resulted

in strong CXCR4 expression in F4/80-positive BMMs (Figure 4A),

and exposure of BMMs to cancer cell conditioned media

triggered amarked upregulation of CXCR4 in macrophages (Fig-

ures 4B and 4C) Crucially, inhibition of transforming growth

factor b (TGF-b) signaling blocked the induction of CXCR4

mRNA and protein by cancer cell conditioned media (Figures

4B and 4C), and TGF-b was sufficient to induce CXCR4 (Fig-

ure 4D) (Chen et al., 2005).

Immunofluorescence analysis of tumor sections revealed that

CXCL12 is expressed by elongated cells frequently adjacent to

blood vessels (Figure 4E). Co-staining demonstrated that three-

fourths of CXCL12-expressing cells were positive for the generic

fibroblastic marker vimentin and roughly 10% were positive for

the more specific cancer-associated fibroblast marker a-smooth

muscle actin (aSMA) (Figures 4E, 4F, and S7A–S7C). There was

no overlap with either the endothelial marker endomucin or the

pericyte marker desmin (Figures 4E, 4F, and S7D). These data

indicate that CXCL12 is expressed by stromal fibroblasts prox-

imal to blood vessels and explain the recruitment of TAMs to peri-

vascular regions following the TGF-b-driven induction of CXCR4.

Other studies have shown that ANG2/Tie2 blockage results in a

phenotype similar to the one we observe following CXCR4

blockade with reduced vascular density and failure of TAMs to

attach to the blood vessels (Harney et al., 2017; Mazzieri et al.,

2011). In addition, our results agree with previous work in which

AMD3100 treatment led to a preferential reduction in perivascu-

lar macrophages (Welford et al., 2011). We propose that CXCR4/

CXCL12 is important for migration to blood vessels, while Tie2 is

required for attachment to the endothelial cells and maturation

into a functional perivascular TAM regulating vascular leakiness

and cancer cell intravasation (Harney et al., 2015).

To conclude, we propose that monocytes, recruited via CCR2

signaling, initially become motile streaming TAMs before a TGF-

b-dependent conversion into CXCR4-expressing macrophages.

These TAMs are then recruited to become sessile perivascular

TAMs by CXCL12. This unidirectional differentiation process

takes 10–14 days. This argues against the view that once

educated, the macrophage phenotype does not change, and it

refutes the opposing idea that unrestricted inter-conversion

between macrophage states is possible. Instead, we document

a surprisingly stereotypic and unidirectional conversion between

macrophage states. Single-cell RNA sequencing (RNA-seq) anal-

ysis suggests that a similar situation applies in human breast can-

cer (Azizi et al., 2017). In the future, it will be interesting to explore

this dynamic in the context of chemotherapy (Hughes et al., 2015;

Karagiannis et al., 2017) and other perturbations, which in some

cases may trigger local proliferation of macrophages (Franklin

et al., 2014). An improved understanding of the lineage and

temporal dynamics of different TAM subsets will be important

for optimizing the targeting of TAMs for therapeutic benefit.

EXPERIMENTAL PROCEDURES

Mice

All mice studies were carried out in accordance with NIH regulation (US) or UK

Home regulation (UK). Procedures were approved by the Albert Einstein

College of Medicine Animal Care (animal use protocol 20130909) and by the

Francis Crick Institute Biological Ethics Committee (project license 70/8380).

MMTV-PyMTmice weremaintained on a susceptibility to Friend leukemia virus

B/NIH (FVB/N) background and were crossed with MMTV-Cre and lox-stop-

lox (LSL)-eGFP or with a co-integrated allele FVB/N MMTV.improvedCre.LSL

enhanced Cerulean Fluorescent Protein (eCFP)jwp mice to develop mice with

green or blue mammary gland tumors. MacGreen mice (Sasmono et al.,

2003) were crossed with PyMT FVB mice to develop MacGreen-PyMT mice

(Ahmed et al., 2002). Age-matched females were used in experiments when

they were around 12–14 weeks old. MaFIA mice, known as C57BL/6 Tg

(Csf1r-EGFP NGFR/FKBP1A/TNFRSF6)2Bck/J, were obtained from The

Jackson Laboratory. All experiments with MaFIA mice were performed with

implantation of orthotopic C57BL/6 PyMT tumors in MaFIA mice. The tumors

were developed by implantation of tumor pieces (2 3 2 mm) of late-stage

Figure 3. Recruitment of TAMs into the Tumor Depends on CCR2, while Recruitment of Perivascular TAMs to the Blood Vessels Depends on
CXCR4 Signaling

(A and B) FACS analysis of the ratio of CCR2 KO/WTmonocytes found in bonemarrow or tumor 2 days (A) or 6 days (B) after adoptive transfer (n = 4mice per time

point). The purple line indicates the ratio of monocytes upon injection.

(C) IF imaging of PyMT tumor sections at different days after final B/B treatment. TAMs are visualized with CD68 (green) and CXCR4 (red), and nuclei are stained

with DAPI (blue). Scale bar is 10 mm.

(D) Quantification of the number of CXCR4+ TAMS found at different times after final B/B injection.

(E) Schematic overview of experiments with AMD3100/CXCR4 inhibitor.

(F) IF imaging of PyMT tumor sections after 5 days of B/B treatment, followed by 7 days of AMD3100 compared to controls. TAMs are visualized with CD68

(green), vasculature is visualized with endomucin (red), and nuclei are stained with DAPI (blue). Scale bar is 20 mm.

(G–I) Quantification of the area blood vessels per field of view (FoV) (G), macrophages per FoV (H), and perivascular macrophages per FoV (I).

(J) IF imaging of PyMT tumor after 5 days of B/B treatment, followed by 7 days of AMD3100. Blood vessels are stained with streptavidin against CD31-biotin

injected 5 min before sacrifice (green) or extravascular dextran (red), and nuclei are stained with DAPI (blue). Scale bar is 20 mm.

(K) Quantification of extravascular 155 kDa dextran TMR as a measurement of vascular leakiness.

Data show mean ± SEM, and each data point represents an individual animal (in A, B, D, G–I, and K).
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spontaneous C57BL/6 PyMT tumors into the mammary fat pad of 5- to

7-week-old female MaFIA mice. Typically, after 6–7 weeks, single PyMT tu-

mors appeared. Experiments were typically performed on 0.6–0.8 cm tumors.

Multiphoton intravital microscopy was performed as previously described

(Harney et al., 2015). Under general anesthesia, the mouse was placed on a

heated microscope stage, with the surgically exposed tumor placed onto a

cover glass. Imaging was performed using a custom-built 2-laser multiphoton

microscope (Entenberg et al., 2011).

FACS Analysis of Tumors, Spleen, and Blood Samples

Tumor or spleen samples were prepared by tissue digestion using Liberase

and Dispase (Roche), combined with red blood cell (RBC) lysis (eBioscience)

as previously reported (Qian et al., 2011). Blood cells were isolated by cardiac

puncture, followed by RBC lysis. Cells were blockedwith an anti-mouse CD16/

CD32 fragment crystallizable (Fc) blocking antibody for 10min before antibody

staining (BD Biosciences). Gating was used to exclude dead cells, cell

doublets, and clusters. In certain experiments, mice were injected with

CD45-fluorescein isothiocyanate (FITC) (eBioscience) 2–3 min before sacrifice

to label all immune cells in the blood, but not in the tissues, at the time of death

to exclude those cells from the tissue analysis, as well as to measure immune

cells inside the blood at the time of death (Tagliani et al., 2011). Data were

analyzed with FlowJo software (Tree Star).

Liposome and Edu Treatment

The liposomes clodronate, control, and DiI (10-dioctadecyl-3,3,3030-tetrame-

thylindocarbocyanine perchlorate) (Clodrosome) were injected into the tail

A

B

E F

D

C

Figure 4. Cancer Cell-Derived TGF-b Upregulates CXCR4 on BMMs, and CXCL12 Is Produced by Fibroblasts

(A) IF of BMMs co-cultured with PyMT cancer cells. Cells are stained for F4/80 (green), CXCR4 (red), and DAPI (blue). cc, cancer cells. Scale bar is 10 mm.

(B) IF of BMMs cultured in BMM media with or without the addition of PyMT cancer cell conditioned media (CM) and transforming growth factor b receptor

(TGF-bR) inhibitor. BMMs are stained with CXCR4 (red) and DAPI (blue). Scale bar is 10 mm.

(C) qPCR analysis for CXCR4 RNA expression performed on the RNA isolated from BMMs treated with PyMT cancer cell CM with (blue) or without (burgundy)

TGF-bR inhibitor (TGF-bi).

(D) IF of BMMs cultured in BMM media without or with the addition of TGF-b (2 ng/mL). BMMs are stained for CXCR4 (red) and DAPI (blue). Scale bar is 10 mm.

(E) IF of PyMT sections stained with CXCL12 (cyan), endomucin (red), and DAPI (gray). Scale bar is 20 mm.

(F) IF of a PyMT tumor section stained with vimentin (magenta), a-smooth muscle actin (aSMA, yellow), CXCL12 (cyan), and DAPI (gray). Scale bar is 20 mm.

Data show mean ± SEM, and each data point represents an individual animal (in C, D, F, and G).
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vein at 5 mL/kg (Buiting et al., 1996; Sunderkötter et al., 2004) in two doses

24 hr apart in age-matched, tumor-bearing PyMT females around 12–14weeks

of age. Either 48 hr or 7 days after the first clodronate liposome injection, CTCs

were isolated (as described later). After the last DiI liposome injections, tissue

samples were isolated at various time points (as described earlier) for IF stain-

ing (as described later) or fluorescence-activated cell sorting (FACS) analysis

(as described earlier). EdU (5-ethynyl-20-deoxyuridine) was dissolved in a

saline solution and injected via tail vein twice at 40 mg/kg, with a 2.5 hr rest

between injections (Cheraghali et al., 1994).

Blood and Bone Marrow Smears

Bone marrow cells were isolated from the femur, and a suspension was

created in a small volume of PBS and spread into a smear on glass slides.

Blood smears were created with blood from the lateral tail vein. The slides

were air-dried and subsequently fixed with 100%methanol for 2min, air-dried,

and kept at 4�C until ready to perform the immunofluorescence (IF) protocol

described later.

Macrophage Depletion Studies in MaFIA Mice

10mg/kg B/B homodimerizer (AP20187, Clontech) diluted in 4% ethanol, 10%

PEG-400, and 1.7% Tween 20 or vehicle control was injected intraperitoneally

on 5 subsequent days. Treatment was started when tumors were 0.6–0.8 cm

(in diameter), and typically, they were not larger than 1.0–1.1 cm by the end of

the experiment. AMD3100 was administered at 5 mg/kg twice a day via intra-

peritoneal injection for 7 days.

Labeling of Vasculature and Measuring Vascular Leakiness

Measurement of vascular leakiness was performed as previously described

(Harney et al., 2015). One hour before the termination of the experiment,

155 kDa- dextran-tetramethylrhodamine (TMR) (Sigma) was injected intrave-

nously (i.v.), and CD31-biotin was injected i.v. 5 min before the end of the

experiment, labeling all active blood vessels. Tumors were fixed overnight in

4% paraformaldehyde (PFA), transferred to 30% sucrose, and embedded in

optimal cutting temperature (OCT) compound. 8 mm sections were cut, and

IF was performed as described later. Extravascular dextran was measured

as previously described using ImageJ.

Immunofluorescence

Cells or tumor sections were fixed and permeabilized with ice-cold acetone

(sections) or ethanol (BMMs) for 10 min, blocked for 1 hr with blocking buffer

(1% BSA, 5% fetal bovine serum [FBS], and 0.1% fish skin gelatin in

PBS-T). Primary antibodies were incubated overnight at 4�C, followed by

PBS-T washes and secondary antibody or fluorescently tagged streptavidin

(Invitrogen) incubation combined with DAPI for 1 hr at room temperature.

EdU was visualized with an EdU click-assay (Molecular Probes) according to

the manufacturer’s instructions, followed by the same IF protocol described

earlier. Images were acquired using a Zeiss Axio Observer with a 403 objec-

tive or a Zeiss LSM 780 confocal microscope with a 203 objective. Images

were subsequently imported into ImageJ for analysis.

Circulating Tumor Cells

Blood was collected from the right ventricle of the heart into a heparin-coated

syringe under terminal anesthesia. After RBC lysis (eBioscience), cells were

seeded into DMEM/F12 media supplemented with 20% FCS and Pen/Strep,

and single tumor cells were counted 7 days after initial plating. Data included

here have new data collated with controls previously reported in Harney et al.

(2015).

Adoptive Transfer

Monocytes were isolated by crushing the femur and tibia of female wild-type

C57BL/6 or CCR2 knockout (KO) mice, followed by purification with a

magnetic-activated cell sorting (MACS) monocyte isolation kit (Miltenyi).

Monocytes were labeled with (5(6)-Carboxyfluorescein N-hydroxysuccini-

midyl ester (CSFE) or CellTrace Violet (Invitrogen) in PBS, washed, and

counted. A 50:50 mixture of CCR2 KO-to-wild-type (WT) monocytes was

prepared and injected in a volume of 100 mL of PBS into the tail vein of

tumor-bearing C57BL/6 mice with surgically implanted PyMT tumors. A mini-

mum of 5 3 106 monocytes of each subtype were injected. Two or six days

after the adoptive transfer, tissues were harvested and analyzed.

BMMs and Conditioned Media Experiments

Bonemarrow cells were isolated from themouse leg bones (femur and tibia) by

flushing with PBS and then differentiated into BMMswithmacrophage colony-

stimulating factor (MCSF) (10 ng/mL, PeproTech) in BMMmedia (DMEM/F12,

Gibco) supplemented with 10% FBS, Pen/Strep, and 10 ng/mL MCSF). When

used for experiments, TGF-b (2 ng/mL, PeproTech) was added after the first

media change, typically 2 days after the isolation, for the duration of the exper-

iment. PyMT cancer cell isolates were prepared as previously described

(Malanchi et al., 2011). 36 hr were allowed for cancer cells to generate condi-

tioned media (CM), which was then pushed through a 0.4 mm syringe filter

(Fisher Scientific). For the treatment of BMMs with CM, 2–3 days after initial

bone marrow isolation, non-adhered bone marrow cells were washed away

and fresh media diluted 50:50 with filtered CM were added either with or

without TGF-b receptor inhibitor (5 mM SB-505124, Sigma). Media were

changed every 2 days until the end of the experiment.

RNA Isolation and qPCR

Cells were collected in RNAprotect reagent (QIAGEN) and kept frozen until

RNA extraction using RNeasy mini kits (QIAGEN). The cDNA library was pre-

pared using M-MuLV reverse transcriptase (New England Biolabs), and

qPCR was performed using SYBR-green platinum (Invitrogen) assays on the

QuantStudio 7 Real-Time PCR systems (Applied Biosystems) with at least

two housekeeping genes for normalization.

Statistical Analysis

Statistical analysis were performed using the chi-square for contingency table

test with EdU data, the standard two-tailed Student’s t test for comparing two

datasets, and ANOVA followed by Tukey’s or Dunnett’s multiple-comparison

post hoc tests for multiple datasets when the sample size was large enough

to confirm normality (Shapiro-Wilk). For smaller datasets, Kruskal-Wallis was

used followed by Dunn’s multiple-comparison test. To examine the distribu-

tion of macrophagemotility, the Kolmogorov-Smirnov test was used. All statis-

tical analysis was done using Prism (GraphPad). All graphs show the number of

mice indicated as separate data points. Level of significance is indicated with

red * (p < 0.05), ** (p < 0.01) or *** (p<0.001).
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