1,482 research outputs found
EEG Microstates Indicate Heightened Somatic Awareness in Insomnia: Toward Objective Assessment of Subjective Mental Content
People with Insomnia Disorder (ID) not only experience abundant nocturnal mentation, but also report altered spontaneous mental content during daytime wakefulness, such as an increase in bodily experiences (heightened somatic awareness). Previous studies have shown that resting-state EEG can be temporally partitioned into quasi-stable microstates, and that these microstates form a small number of canonical classes that are consistent across people. Furthermore, the microstate classes have been associated with individual differences in resting mental content including somatic awareness. To address the hypothesis that altered resting mental content in ID would be reflected in an altered representation of the corresponding EEG microstates, we analyzed resting-state high-density EEG of 32 people with ID and 32 age- and sex-matched controls assessed during 5-min eyes-closed wakefulness. Using data-driven topographical k-means clustering, we found that 5 microstate classes optimally explained the EEG scalp voltage map sequences across participants. For each microstate class, 3 dynamic features were obtained: mean duration, frequency of occurrence, and proportional coverage time. People with ID had a shorter mean duration of class C microstates, and more frequent occurrence of class D microstates. The finding is consistent with previously established associations of these microstate properties with somatic awareness, and increased somatic awareness in ID. EEG microstate assessment could provide objective markers of subjective experience dimensions in studies on consciousness during the transition between wake and sleep, when self-report is not possible because it would interfere with the very process under study. Addressing somatic awareness may benefit psychotherapeutic treatment of insomnia
The Italian Network for Tumor Biotherapy (NIBIT): Getting together to push the field forward
As for a consolidated tradition, the 5th annual meeting of the Italian Network for Cancer Biotherapy took place in the Certosa of Pontignano, a Tuscan monastery, on September 20â22, 2007. The congress gathered more than 40 Italian leading groups representing academia, biotechnology and pharmaceutical industry. Aim of the meeting was to share new advances in cancer bio-immunotherapy and to promote their swift translation from pre-clinical research to clinical applications. Several topics were covered including: a) molecular and cellular mechanisms of tumor escape; b) therapeutic antibodies and recombinant constructs; c) clinical trials up-date and new programs; d) National Cooperative Networks and their potential interactions; e) old and new times in cancer immunology, an "amarcord". Here, we report the main issues discussed during the meeting
Spectral exponent assessment and neurofilament light chain: a comprehensive approach to describe recovery patterns in stroke
IntroductionUnderstanding the residual recovery potential in stroke patients is crucial for tailoring effective neurorehabilitation programs. We propose using EEG and plasmatic Neurofilament light chain (NfL) levels as a model to depict longitudinal patterns of stroke recovery.MethodsWe enrolled 13 patients (4 female, mean age 74.7â±â8.8) who underwent stroke in the previous month and were hospitalized for 2-months rehabilitation. Patients underwent blood withdrawal, clinical evaluation and high-definition EEG at T1 (first week of rehabilitation) and at T2 (53â±â10âdays after). We assessed the levels of NfL and we analyzed the EEG signal extracting Spectral Exponent (SE) values. We compared our variables between the two timepoint and between cortical and non-cortical strokes.ResultsWe found a significant difference in the symmetry of SE values between cortical and non-cortical stroke at both T1 (pâ=â0.005) and T2 (pâ=â0.01). SE in the affected hemisphere showed significantly steeper values at T1 when compared with T2 (pâ=â0.001). EEG measures were consistently related to clinical scores, while NfL at T1 was related to the volume of ischemic lesions (râ=â0.75; pâ=â0.003). Additionally, the combined use of NfL and SE indicated varying trends in longitudinal clinical recovery.ConclusionWe present proof of concept of a promising approach for the characterization of different recovery patterns in stroke patients
Giant Molecular Clouds in the Early-type Galaxy NGC 4526
D. Utomo, et al., âGiant Molecular Clouds in the Early-Type Galaxy NGC 4526â, The Astrophysical Journal, Vol. 803(1), April 2015. © 2015. The American Astronomical Society. All rights reserved.We present a high spatial resolution (â20 pc) of 12CO(2 â1) observations of the lenticular galaxy NGC 4526. We identify 103 resolved giant molecular clouds (GMCs) and measure their properties: size R, velocity dispersion Ïv, and luminosity L. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC 4526 is gravitationally bound, with a virial parameter α ⌠1. The mass distribution, dN/dM â Mâ2.39 ± 0.03, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no sizeâline width correlation for the NGC 4526 clouds, in contradiction to the expectation from Larsonâs relation. In general, the GMCs in NGC 4526 are more luminous, denser, and have a higher velocity dispersion than equal-size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density ÎŁ of GMCs is not approximately constant, as previously believed, but varies by âŒ3 orders of magnitude. We also show that the size and velocity dispersion of the GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e., Ïv Râ1/2 â ÎŁ1/2.Peer reviewe
Detection of Leishmania infantum DNA mainly in Rhipicephalus sanguineus male ticks removed from dogs living in endemic areas of canine leishmaniosis
Background: Sand flies are the only biologically adapted vectors of Leishmania parasites, however, a possible role in the transmission of Leishmania has been proposed for other hematophagous ectoparasites such as ticks. In order to evaluate natural infection by Leishmania infantum in Rhipicephalus sanguineus ticks, taking into account its close association with dogs, 128 adult R. sanguineus ticks removed from 41 dogs living in endemic areas of canine leishmaniosis were studied. Methods: Individual DNA extraction was performed from each tick and whole blood taken from dogs. Dog sera were tested for IgG antibodies to L. infantum antigen by ELISA and L. infantum real-time PCR was performed from canine whole blood samples and ticks. Results: Leishmania infantum PCR was positive in 13 ticks (10.1%) including one female, (2.0%) and 12 males (15.2%), and in only five dogs (12.2%). Male ticks had a significantly higher infection rate when compared to female R. sanguineus. The percentage of L. infantum seroreactive dogs was 19.5%. All but two PCR positive dogs were seroreactive. Leishmania infantum PCR positive ticks were removed from seropositive and seronegative dogs with a variety of PCR results. Conclusions: This study demonstrates high prevalence of L. infantum DNA in R. sanguineus ticks removed from L. infantum seropositive and seronegative dogs. The presence of L. infantum DNA was detected mainly in male ticks possibly due to their ability to move between canine hosts and feed on several canine hosts during the adult life stage. Additional studies are needed to further explore the role of R. sanguineus ticks and in particular, male adults, in both the epidemiology and immunology of L. infantum infection in dogs in endemic areas
Planck intermediate results: XVI. Profile likelihoods for cosmological parameters
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the ÎCDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit â mÎœ †0.26 eV (95% confidence) from the CMB+lensing+BAO data combination.
Reproduced with permission from Astronomy & Astrophysics, © ESO 201
L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis
Planck Collaboration.The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG
(Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). The research leading to these results has received funding from the European Research Council under the European Unionâs Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 267934.Peer Reviewe
Planck intermediate results XXIV : Constraints on variations in fundamental constants
Any variation in the fundamental physical constants, more particularly in the fine structure constant, a, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift z - 10(3) by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, H-0. In addition to a, we can set a constraint on the variation in the mass of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Delta alpha/alpha = (3.6 +/- 3.7) x 10(-3) and Delta m(e)/m(e) = (4 +/- 11) x 10(-3) at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation in a (corresponding to a gradient across our Hubble volume) is constrained to be delta alpha/alpha = (-2.4 +/- 3.7) x 10(-2).Peer reviewe
- âŠ