11 research outputs found

    Are social incubators different from other incubators? Evidence from Italy

    Get PDF
    This paper defines and analyses incubators that mainly support start-ups with a significant social impact. In 2016, a survey was conducted on the 162 incubators active in Italy, and a total of 88 responses were received. An analysis of the literature and of this dataset led to the identification of three types of incubators: Business, Mixed, and Social. Thirty of the respondents sent information on their tenants. Thanks to the data regarding 247 tenants, it was possible to analyze the impact of the three different types of incubators (Business, Mixed, and Social) on the tenants’ growth through OLS regression analyses. A Social Incubator is here defined as an incubator that supports more than 50% of start-ups that aim to introduce a positive social impact. The study shows that Social Incubators perceive social impact measurement and training/consulting on business ethics and CSR as being more important services than other incubator types. The regression analyses explain that Social Incubators are as efficient as other incubators, in terms of tenants’ economic growth, notwithstanding the focus of Social Incubators on start-ups that do not pursue only economic objectives. Finally, this study indicates that policymakers can foster Social Incubators to support social entrepreneurship

    Influence of Antisynthetase Antibodies Specificities on Antisynthetase Syndrome Clinical Spectrum TimeCourse

    Get PDF
    Introduction: Increased cardiovascular (CV) morbidity and mortality is observed in inflammatory joint diseases (IJDs) such as rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. However, the management of CV disease in these conditions is far from being well established.Areas covered: This review summarizes the main epidemiologic, pathophysiological, and clinical risk factors of CV disease associated with IJDs. Less common aspects on early diagnosis and risk stratification of the CV disease in these conditions are also discussed. In Europe, the most commonly used risk algorithm in patients with IJDs is the modified SCORE index based on the revised recommendations proposed by the EULAR task force in 2017.Expert opinion: Early identification of IJD patients at high risk of CV disease is essential. It should include the use of complementary noninvasive imaging techniques. A multidisciplinary approach aimed to improve heart-healthy habits, including strict control of classic CV risk factors is crucial. Adequate management of the underlying IJD is also of main importance since the reduction of disease activity decreases the risk of CV events. Non-steroidal anti-inflammatory drugs may have a lesser harmful effect in IJD than in the general population, due to their anti-inflammatory effects along with other potential beneficial effects.This research was partially funded by FOREUM—Foundation for Research in Rheumatolog

    Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization

    No full text
    Macrophages contribute to peripheral nerve regeneration and produce collagen VI, an extracellular matrix protein involved in nerve function. Here, we show that collagen VI is critical for macrophage migration and polarization during peripheral nerve regeneration. Nerve injury induces a robust upregulation of collagen VI, whereas lack of collagen VI in Col6a1(-/-) mice delays peripheral nerve regeneration. In vitro studies demonstrated that collagen VI promotes macrophage migration and polarization via AKT and PKA pathways. Col6a1(-/-) macrophages exhibit impaired migration abilities and reduced antiinflammatory (M2) phenotype polarization, but are prone to skewing toward the proinflammatory (M1) phenotype. In vivo, macrophage recruitment and M2 polarization are impaired in Col6a1(-/-) mice after nerve injury. The delayed nerve regeneration of Col6a1(-/-) mice is induced by macrophage deficits and rejuvenated by transplantation of wild-type bone marrow cells. These results identify collagen VI as a novel regulator for peripheral nerve regeneration by modulating macrophage function

    Saccharomyces CDK1 Phosphorylates Rad53 Kinase in Metaphase, Influencing Cellular Morphogenesis*

    No full text
    Rad53 is an essential protein kinase governing DNA damage and replication stress checkpoints in budding yeast. It also appears to be involved in cellular morphogenesis processes. Mass spectrometry analyses revealed that Rad53 is phosphorylated at multiple SQ/TQ and at SP/TP residues, which are typical consensus sites for phosphatidylinositol 3-kinase-related kinases and CDKs, respectively. Here we show that Clb-CDK1 phosphorylates Rad53 at Ser774 in metaphase. This phosphorylation event does not influence the DNA damage and replication checkpoint roles of Rad53, and it is independent of the spindle assembly checkpoint network. Moreover, the Ser-to-Asp mutation, mimicking a constitutive phosphorylation state at site 774, causes sensitivity to calcofluor, supporting a functional linkage between Rad53 and cellular morphogenesis

    Origin of optical nonlinearity in plasmonic semiconductor nanostructures

    No full text
    The development of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which requires that the interacting waves propagate in transparent volumes for distances much longer than their wavelength. Here we present experimental evidence that optical nonlinearities in doped semiconductors are due to free-electron and their efficiency could exceed by several orders of magnitude that of conventional dielectric nonlinearities. Our experimental findings are supported by comprehensive computational results based on the hydrodynamic modeling, which naturally includes nonlocal effects, of the free-electron dynamics in heavily doped semiconductors. By studying third-harmonic generation from plasmonic nanoantenna arrays made out of heavily n-doped InGaAs with increasing levels of free-carrier density, we discriminate between hydrodynamic and dielectric nonlinearities. As a result, the value of maximum nonlinear efficiency as well as its spectral location can now be controlled by tuning the doping level. Having employed the common material platform InGaAs/InP that supports integrated waveguides, our findings pave the way for future exploitation of plasmonic nonlinearities in all-semiconductor photonic integrated circuits
    corecore