136 research outputs found

    Un curieux microfossile de la Molasse oligocĂšne de Suisse occidentale et de Haute-Savoie (France)

    Get PDF
    Nouvelle description de l’incertae sedis Calcicarpinum? fallax. DĂ©termination de son Ăąge oligocĂšne supĂ©rieur et de sa rĂ©partition biogĂ©ographique. Il s’agit d’un nucule de Boraginaceae dĂ©sormais nommĂ© Boraginocarpus fallax (Taugourdeau-Lantz & Rosset 1966) comb. novA re-analysis and new description of the incertae sedis Calcicarpinum? fallax is presented, and its Late Oligocene age and paleobiogeographical distribution is ascertained. It is identified as a nutlet of a Boraginaceae and is named Boraginocarpus fallax (Taugourdeau-Lantz & Rosset 1966) comb. nov

    Early Paleogene wildfires in peat-forming environments at Schöningen, Germany

    Get PDF
    AbstractWildfire activity in early Paleogene greenhouse conditions can be used as an analogue to gauge the effect of future warming trends on wildfire in the current climate system. Inertinite (fossil charcoal in coal) from 11 autochthonous early Paleogene lignite seams from the Schöningen mine (Germany) was quantified using macerations, in situ pillars and industry standard crushed samples. A new three transect method was developed to quantify in situ charcoal. The combination of in situ pillars and crushed samples accounts for temporal and spatial variation in charcoal through a stratigraphically oriented pillar, whilst maintaining comparability with industry standards and previous work. Charcoal occurs as a range of randomly distributed particle sizes, indicating that fires were burning locally in the Schöningen peat-forming environment and in the surrounding areas, but according to petrological data, not in an episodic or periodic pattern. Although charcoal abundance is low (relative to previous high fire worlds such as the Cretaceous), three quantitative and semi-quantitative methods show increased wildfire activity (relative to the modern world) in the warmest parts of the early Paleogene. As atmospheric oxygen levels stabilised to modern values and precipitation and humidity became the main control on wildfire, increased rainfall followed by drier intervals would have created an environment rich in dry fuel in which wildfires could easily propagate if humidity was low enough. In the later part of the Early Eocene (Ypresian) charcoal abundance fell to levels similar to those found in modern peats. This indicates that the transition to the modern low fire world occurred within the Early Eocene, earlier than previous records suggest

    Chemical characteristics of macroscopic pyrogenic carbon following millennial-scale environmental exposure

    Get PDF
    Pyrogenic Carbon (PyC) is ubiquitous in global environments, and is now known to form a significant, and dynamic component of the global carbon cycle, with at least some forms of PyC persisting in their depositional environment for many millennia. Despite this, the factors that determine the turnover of PyC remain poorly understood, as do the physical and chemical changes that this material undergoes when exposed to the environment over tens of thousands of years. Here, we present the results of an investigation to address these knowledge gaps through chemical and physical analysis of a suite of wood PyC samples exposed to the environment for varying time periods, to a maximum of >90,000 years. This includes an assessment of the quantity of resistant carbon, known as Stable Polyaromatic Carbon (SPAC) versus more chemically labile carbon in the samples. We find that, although production temperature is likely to determine the initial ‘degradation potential’ of PyC, an extended exposure to environmental conditions does not necessarily mean that remaining PyC always progresses to a ‘SPAC-dominant’ state. Instead, some ancient PyC can be composed largely of chemical components typically thought of as environmentally labile, and it is likely that the depositional environment drives the trajectory of preservation versus loss of PyC over time. This has important implications for the size of global PyC stocks, which may have been underestimated, and also for the potential loss of previously stored PyC, when its depositional environment alters through environmental or climatic changes

    X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early diverging members of the genus

    Get PDF
    PREMISE OF THE STUDY: Fossilized seeds similar to Cissus (Vitaceae) have been recognized from the Miocene of Kenya, though some were previously assigned to the Menispermaceae. We undertook a comparative survey of extant African Cissus seeds to identify the fossils and consider their implications for the evolution and biogeography of Cissus and for African early Miocene paleoenvironments. METHODS: Micro-computed tomography (”CT) and synchrotron-based X-ray tomographic microscopy (SRXTM) were used to study seed morphology and anatomy. Virtual taphonomy, using SRXTM data sets, produced digital fossils to elucidate seed taphonomy. Phylogenetic relationships within Cissus were reconstructed using existing and newly produced DNA sequences for African species. Paleobiology and paleoecology were inferred from African nearest living relatives. KEY RESULTS: The fossils were assigned to four new Cissus species, related to four modern clades. The fossil plants were interpreted as climbers inhabiting a mosaic of riverine woodland and forest to more open habitats. Virtual taphonomy explained how complex mineral infill processes concealed key seed features, causing the previous taxonomic misidentification. Newly sampled African species, with seeds most similar to the fossils, belong to four clades within core Cissus, two of which are early diverging. CONCLUSIONS: Virtual taphonomy, combined with X-ray imaging, has enabled recognition of the first fossil Cissus and Vitaceae from Africa. Early-divergent members of the core Cissus clade were present in Africa by at least the early Miocene, with an African origin suggested for the Cissus sciaphila clade. The fossils provide supporting evidence for mosaic paleoenvironments inhabited by early Miocene hominoids

    Scanning Electron Microscopy and Synchrotron Radiation X-Ray Tomographic Microscopy of 330 Million Year Old Charcoalified Seed Fern Fertile Organs

    Get PDF
    Abundant charcoalified seed fern (pteridosperm) pollen organs and ovules have been recovered from Late Viséan (Mississippian 330 Ma) limestones from Kingswood, Fife, Scotland. To overcome limitations of data collection from these tiny, sometimes unique, fossils, we have combined low vacuum scanning electron microscopy on uncoated specimens with backscatter detector and synchrotron radiation X-ray tomographic microscopy utilizing the Materials Science and TOMCAT beamlines at the Swiss Light Source of the Paul Scherrer Institut. In combination these techniques improve upon traditional cellulose acetate peel sectioning because they enable study of external morphology and internal anatomy in multiple planes of section on a single specimen that is retained intact. The pollen organ Melissiotheca shows a basal parenchymatous cushion bearing more than 100 sporangia on the distal face. Digital sections show the occurrence of pollen in some sporangia. The described ovule is new and has eight integumentary lobes that are covered in spirally arranged glandular hairs. Virtual longitudinal sections reveal the lobes are free above the pollen chamber. Results are applied in taxonomy and will subsequently contribute to our understanding of the former diversity and evolution of ovules, seeds, and pollen organs in the seed ferns, the first seed-bearing plants to conquer the lan

    Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies:A cautionary tale

    Get PDF
    The following supplementary information includes one dataset which contains 3 tables: Biomarker distributions and proxies at Cobham, UK Bulk and compound specific isotope data at Cobham (UK) Model-derived mean annual surface temperature and precipitation estimates as a function of CO2 at Cobham (UK)

    Heterogeneity of free and occluded bitumen in a natural maturity sequence from Oligocene Lake Enspel

    Get PDF
    Sedimentation in Oligocene Lake Enspel was rapidly terminated by a basaltic lava flow. This introduced a preservational barrier while imparting a ‘natural flash pyrolysis’, during which the organic matter in underlying stratigraphic units was subjected to rapid thermal maturation resulting in hydrocarbon generation. Samples from these strata exhibit a steep maturity gradient (0.25–1.07% optical vitrinite reflectance, or RO) over uniform organofacies. This offers the opportunity to investigate bitumen generation during rapid thermal maturation mechanistically, in particular the nature of Bitumen 2—occluded bitumen, which is only recoverable after the digestion of the mineral matrix and was frequently dismissed as an artifact of incomplete extraction. Elaborate sequential extraction of the contact metamorphic sequence of oil shales at Enspel revealed systematic changes in bitumen composition. These trend progressively towards those of occluded bitumen, which exhibits a systematically elevated thermal maturity, a higher degree of catalytic biomarker-rearrangement and the conspicuous absence of molecular signatures from vascular plants that are present in the free bitumen. One plausible explanation involves a contribution of allochthonous clay-adsorbed organic matter to Bitumen 2. This could represent a mixture of older reworked bitumen and an early-diagenetic snapshot of clay adsorbed organic matter. Alternatively, a close association of early-generated bitumen with clay minerals may have led to enhanced isomerization and catalytically influenced ‘uniformization’ of alkane signatures. Deviations from the expected relationships between various thermal maturity parameters suggest variable dependence on the time-pressure-temperature pathway (i.e. metamorphic facies). The maturation of organic matter likely behaves differently under a contact metamorphic regime or during rapid subsidence and exhumation, as compared to slow maturation during regional subsidence. Our data also suggest that geologically brief shallow intrusive or extrusive magmatism might not be as destructive to the sedimentary hydrocarbon inventory as hitherto thought. This study draws attention to the small-scale compositional heterogeneity of bitumen that can be studied using sequential extraction methods. More importantly, it suggests that occluded bitumen could potentially harbor information on organic matter that pre-dates in situ primary productivity and may be derived from allochthonous biomass and detrital input
    • 

    corecore