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Wildfire activity in early Paleogene greenhouse conditions can be used as an analogue to gauge the effect of fu-
turewarming trends onwildfire in the current climate system. Inertinite (fossil charcoal in coal) from11 autoch-
thonous early Paleogene lignite seams from the Schöningenmine (Germany) was quantified using macerations,
in situ pillars and industry standard crushed samples. A new three transect methodwas developed to quantify in
situ charcoal. The combination of in situ pillars and crushed samples accounts for temporal and spatial variation in
charcoal through a stratigraphically oriented pillar, whilst maintaining comparability with industry standards
and previous work. Charcoal occurs as a range of randomly distributed particle sizes, indicating that fires were
burning locally in the Schöningen peat-forming environment and in the surrounding areas, but according to pet-
rological data, not in an episodic or periodic pattern. Although charcoal abundance is low (relative to previous
highfireworlds such as the Cretaceous), three quantitative and semi-quantitativemethods show increasedwild-
fire activity (relative to the modern world) in the warmest parts of the early Paleogene. As atmospheric oxygen
levels stabilised tomodern values and precipitation and humidity became themain control onwildfire, increased
rainfall followed by drier intervals would have created an environment rich in dry fuel in which wildfires could
easily propagate if humiditywas low enough. In the later part of the Early Eocene (Ypresian) charcoal abundance
fell to levels similar to those found in modern peats. This indicates that the transition to the modern low fire
world occurred within the Early Eocene, earlier than previous records suggest.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wildfire has always been an important part of the natural environ-
ment (Bowman et al., 2009; Pausas and Keeley, 2009; Scott et al.,
2014), but the role of wildfire in the early Paleogene ecosystems is not
yet fully understood (Scott, 2000; Belcher et al., 2013). One of the key
sources of evidence for ancient wildfires is the presence of charcoal
(Potonié, 1929; Harris, 1958; Komarek, 1972; Scott, 1989, 2000, 2010;
Glasspool and Scott, 2013; Scott et al., 2014), an inert substance with a
high potential for survival in the fossil record (Scott, 1989, 2010;
Figueiral, 1999). A 400 million year record of charcoal in coals
(Glasspool and Scott, 2010; also replotted by Bond, 2015) showed a
transition in the Cenozoic from moderate (17% in the Paleocene) to
low (3.5% in theMiddle to Late Eocene) charcoal percentages. However,
that study was limited by the use of 10 million year bins. Paleogene

warm climates (e.g. the Early Eocene Climatic Optimum, EECO) are
not direct analogues for future warming trends in the current climate
system because they occur during a time when global temperatures
were significantly warmer than now. However, improved temporal res-
olution of early Paleogene wildfire activity can lead to better under-
standing of the modern fire world and contribute to better predictions
of wildfire activity in future warm climates.

Charcoal can accumulate in any depositional environment, but peat
deposits are particularly valuable archives of past wildfire activity. Peat
is an accumulation of partially decayed plant material which, after
peatification and burial diagenesis, may transform to lignite. Lignite is
less altered than more mature, higher rank, coals, preserving a record
of the peat-forming environment and vegetation (Teichmüller, 1989;
Scott, 1991a,b; Wüst et al., 2001; Moore and Shearer, 2003) sometimes
to themolecular level (Pancost et al., 2007; Fabbri et al., 2009). Charcoal
in the peat-forming environment is likely to be preserved closer to its
point of formation than in other settings, as it is not subjected to vari-
ables of fluvial transport including differential saturation (Vaughan
and Nichols, 1995; Nichols et al., 2000), concentration, floatation, size
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sorting and fragmentation (Nichols, 1999; Scott et al., 2000). Moreover,
peat-forming environments require hydrological stability (Holden,
2005), which mitigates the impact of different climate regimes when
comparing records of wildfire (Glasspool and Scott, 2010). Therefore,
the charcoal record in lignites offers the best option for comparison of
the wildfire record between past time intervals.

Riegel et al. (2012) have undertaken a long term stratigraphic, sedi-
mentological and palaeoenvironmental study of the Schöningen mine
(Fig. 1), the sole north German locality where early Paleogene lignites
can be studied in succession. Their field surveys document charcoal in
multiple seams in different quantities. The current work uses three
methods to quantify charcoal in the Schöningen sequence of early Paleo-
gene peat-forming environments, enabling high resolution reconstruc-
tion of long term changes in early Paleogene wildfire and interpretation
of the timing of the transition to modern levels of fire activity.

2. The Schöningen mine

2.1. Regional geology and palaeoenvironments

The Schöningen Südfeld open cast mine in Lower Saxony, Northern
Germany (52.1333° N, 10.9500° E) exposes a sequence of 170 m that in-
cludes 11 continuous (occasionally splitting) lignite seams, the oldest
(and thickest) of which is Main seam followed by seams 1–9
(supplementary Figs. 1.1 and1.2). Locally, the lignite seamsofminor thick-
ness are intercalated, including “seam L” (between seam 6 and 7, supple-
mentary Fig. 1.1B), which was also sampled for this study. The mine is
located on one of the rim synclines of the Helmstedt-Stassfurt salt wall, a
prominent structure that runs NW–SE within the Subhercynian basin
(Brandes et al., 2012, 2013; Osman et al., 2013) for more than 70 km
(Riegel et al., 2012). Rim synclines formed around the domed salt wall
(Manger, 1952), and although there is some regional deformation due to
the salt dome there is no obvious faulting in the Schöningen area.

Rooting is generally prevalent in nearly all lignite seams at
Schöningen and is frequently visible from the lignite beds into the

underlying interbeds, indicating autochthonous peat accumulation
(supplementary material herein; Riegel et al., 2012). Between each
seam is an interbed composed of clastic sediments, these sediments
are crucial indicators of the depositional environment (Riegel et al.,
2012). Characteristic features include bimodal cross bedding, coarsen-
ing and fining upward sequences, Ophiomorpha burrows and infilled
burrows in tops of seams. Taken together these indicate a nearshore
coastal setting subjected to tidal influence, changes in energy regime
and episodic submergence or emergence (Riegel et al., 2012). Interbed
5 (above seam 4) also contains rooted seagrasses, which clearly indicate
marine influence (supplementary material herein; Riegel et al., 2012).
Thick, flat lying root branches immediately underlying seam 6 were
interpreted by Riegel et al. (2012) as indication of a tall mire forest
growing on a marine substrate. Interbed 9 (above seam 8) shows the
leastmarine influence at Schöningen as indicated by in situ palm stumps
(supplementary Fig. 2.10.3; Riegel et al., 2012).

Combined evidence from lignite seams and interbeds at Schöningen
reveals threemain facies. Terrestrial peat-formation is obvious from the
many lignite seams, shore-line deposition is indicated by palm stumps
and evidence of intertidal sedimentation is visible in most interbeds. It
has commonly been suggested that Schöningenwas part of an estuarine
environment (Standke, 2008; Krutzsch, 2011; Riegel et al., 2012) in
which the peat-forming environment was cyclically flooded by marine
transgressions. The sequence, therefore, is a suitable study site to exam-
ine temporal variations in charcoal occurrence in the peat-forming envi-
ronments of a low-lying coastal setting.

2.2. Dating

Based on palynology, Pflug (1952) regarded the lower group of lig-
nite seams (Schöningen Formation sensu; Riegel et al., 2012) as Early
Eocene and the upper seam group (Helmstedt Formation including the
Victoria seam) as Middle Eocene. Lenz (2005) also concluded that the
Helmstedt Formation isMiddle Eocene based on palynological evidence.
The palynology at Schöningen has beenwell documented by Riegel et al.

Fig. 1. (A)Central Europeanpalaeofaciesmap showing the location of the Schöningenmine (white S inblack circle),modern coastlines andGermany (see inset);modified fromRiegel et al.
(2015, Fig 1). (B) An overview of the Schöningen mine (Google Earth, accessed September 2013) with approximate collecting areas marked in the north and south.
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(2012) who found that pollen and spore assemblages are very similar in
all seams apart from an increase in palm pollen in seam 4.

Evidence for dating the lowest part (Main seam and seam 1) of the
Schöningen Formation comes fromAhrendt et al. (1995)who identified
dinoflagellate zone D5b, as defined by Köthe (1990), in the interbed di-
rectly above Main seam in the opposite syncline in the Emmerstedt
area. If the Main seam in the Emmerstedt area is coeval with the Main
seam at Schöningen, then this implies that interbed 1 and seam 1 at
Schöningen are Early Eocene and the Paleocene–Eocene (Thanetian–
Ypresian) boundary would be within Main seam or below. However, it
must be noted that the dinoflagellate marker species for base zone
D5b (LO Apectodinium augustum) is not present in the onshore sections
in northern Germany (Köthe, 1990, 2012) and the marker for top zone
D5b (FO Wetzeliella astra) is very rare (Köthe, 1990). Furthermore
Köthe (1990) stated that an Apectodinium acme persisted in zone D5b
but that zone D5a was absent. By the original definitions (Costa and
Manum, 1988) the Apectodinium acme occurs in D5a so it is unclear
why Köthe (1990) considered D5a to be absent. Köthe (2012 p. 207)
stated “the exact position of the Apectodinium acme in the study area
[German Sector, SE North Sea Basin] has become uncertain”.

Although there are few dinoflagellates present in the interbeds at
Schöningen, probably due to the nearshore depositional settings, Riegel
et al. (2012) recorded an abundance of Apectodinium commencingwithin
interbed 2. If this represents the Apectodinium acme of zone D5b, and as-
sociatedwith the Paleocene–Eocene thermalmaximum, thenMain seam,
interbed 1, seam 1 and the lowermost part of interbed 2 are Paleocene.

Evidence for dating the top seam in the Schöningen succession also
comes from Ahrendt et al. (1995) who identified dinoflagellate zone
D9a, as defined by Köthe (1990), in boreholes from the Emmerstedt
area at levels both below and above a horizon they correlated with
the Emmerstedter Grünsand at the top of the lower seam group. Zone
D9a is calibrated to Chron C22r by Gradstein (2012) and is within the
late Ypresian. Assuming that the lower seam group in the Emmerstedt
and Helmstedt area (some 12 km north east of Schöningen) is coeval
with the lower seam group at Schöningen (with the Emmerstedter
Grünsand either beingmissing or replaced by interbed 9 at Schöningen.
Riegel et al., 2012) then the uppermost seam (seam 9) studied in this
paper is likely to be within the late Early Eocene.

Although there are uncertainties we treat seam 9 as late Early
Eocene (Ypresian) in this paper. Based on this, we tentatively suggest
that seam 5 was associated with the EECO. Main seam and seam 1
may be either earliest Eocene or latest Paleocene.

3. Methods

3.1. Field collections

Collecting opportunities at Schöningen are dependent onmining ac-
tivities. In 2012 and 2013 samples were collected specifically for this
charcoal study from Main seam to seam 9. All of the samples were col-
lected in the north area of the mine except for seam 9 which was sam-
pled in the south east. Between 2005 and 2010 samples were collected
from seams 1 to 9 during the research leading to publication by Riegel
et al. (2012). Seam 3 was sampled in both the north and south west
areas of the mine. Seams 4 and 6 were sampled in the north area of
the mine. Seams 1, 2, 5, L, 7 and 8 were sampled in the south west
area of the mine. Seam 9 was sampled in the south east of the mine.
The samples collected were archived in the Senckenberg Museum
Palaeobotany Section and sub-sampled for use in this study in 2014.

3.2. In situ pillars, crushed blocks and macerations

To preserve intact stratigraphy from various parts of the seam, two
adjacent stratigraphically oriented intact lignite pillars were excavated
in the field (2012 and 2013 field season only) and tightly wrapped in
extra strong aluminium foil to prevent breakage. The supplementary

materials show the exact position of pillars within the seams. In the lab-
oratory one pillar was dried and embedded in resin. The impregnated
block was then polished following the method of Collinson et al.
(2007) to produce an “in situ pillar”. The second pillar was preserved
in cold storage for future subsampling. Bulk samples were collected in
the field from each bedwithin the seam. Bedswere defined by a change
in lithotype and, for the 2012 and 2013 field seasons, are shown on the
logs in the supplementary material. Logs for the 2005–2010 field sea-
sons are archived in the Senckenberg Museum Palaeobotany Section.
Samples representing a whole seam or part of a seam (upper/middle/
lower), composed of 5 g of each lignite bed, were produced for each
seam. The number of parts is based on seam thickness. Thin seams 3, 4,
5, L, 7, 8 and 9 were subdivided into 2 parts (lower and upper); thick
seams Main, 6 and 1 were subdivided into 6, 4 and 3 parts respectively.
Thicker seams with more beds are therefore represented by a larger
whole seam sample and more part seam samples. For example, the
‘part seam’ sample 32Scho1.XXXIII.2-5 includes samples from each of
the beds 2 to 5 as shown on the log of seam 1 (supplementary material
Fig 2.2.3). Information on the beds incorporated into each part seam sam-
ple can be obtained in this manner using the supplementary material.

Whole and part seam samples were prepared to industry standard
by Jim Hower and colleagues at the Centre for Applied Energy Research,
University of Kentucky, where possible samples were crushed to the
standard 20 mesh size, ≤840 μm, using a grinder. Soft samples were
crushed manually to a top particle size of c. 1000 μm. A subsample
was embedded in epoxy resin. The resultant small short cylindrical
blocks were polished using 60-, 240-, 400-, and 600-grit SiC papers
followed by 0.3 micron alumina on Buehler TexMet paper and 0.05 mi-
cron alumina on silk. The final product is a polished block (essentially
equivalent to a petrographic pellet in some author's terminology) pre-
pared to industry standards containing a crushed lignite sample. The
resin embedded crushed samples and in situ pillars both allow for re-
peated or future study of the same sample. Polished blocks containing
crushed samples were viewed in reflected light under immersion oil
(Cargille type A, density 0.923 g/cc at 23 ˚C, RI of 1.514) using a Leica
reflected light microscope and either ×20 or ×50 oil immersion objec-
tives. Photomicrographs were gathered as colour jpeg using a 5 mega-
pixel ProgRes Capture Pro 2.7 camera.

20 g lignite samples, from the same bed fromwhich each in situpillar
was obtained, were treated with 15% H2O2 for 4 hours before sieving in
water into size factions retained on 125 μm, 250 μm, 500 μm and 1 mm
sieve meshes. Particles released were studied using light microscopy
suspended in distilled water so as to reduce breakage. Charcoal particle
abundance was estimated for the 250–500 μm size fraction. An ACFOR
(abundant, common, frequent, occasional, rare) Domin scale, as used
in ecology, was modified by combining the abundant and common
categories.

3.3. Petrography and inertinite quantification

Some authors separate charcoal into categories based on its per-
ceived origin (Teichmüller, 1989; Moore et al., 1996; Valentim et al.,
2013) but this separation has been questioned extensively (Winston,
1993; Scott, 1989, 2000; Scott and Glasspool, 2007). Multiple charring
experiments have been performed on various plants and fungi
(e.g. Jones et al., 1993, 1997; Guo and Bustin, 1998; McParland et al.,
2007; Scott, 2010 and references therein) all of which demonstrate
that increasing charring temperature leads to increasing reflectance. In
the petrographic study of coals charcoal is referred to as inertinite
(ICCP, 1963, 2001; Sýkorová et al., 2005). Increased reflectance (com-
pared to other components) characterises inertinite, thus, in the
absence of macrinite, micrinite and secretinite which are restricted to
hard coals, charcoal and inertinite can be considered synonymous.

Lignite components, i.e. macerals, were identified according to
the International Committee for Coal and Organic Petrology (ICCP)
standard allowing for comparability between disciplines and
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practitioners. Four inertinite macerals were studied in this paper,
fusinite, semifusinite, inertodetrinite and funginite. Fusinite
(Fig. 2A–D) has the highest reflectance of the inertinite macerals
(ICCP, 2001) so it appears brighter than all of the other macerals
under reflected light. Pieces usually show well preserved cellular
structure but a homogeneous particle with high reflectance can still
be classified as fusinite as decomposition before charring can result
in a bright relatively homogenous maceral (Taylor et al., 1998).
Semifusinite (Fig. 2B and D) is a product of low temperature char-
ring, consequently it has lower reflectance than fusinite but higher
than huminite (ICCP, 2001). Semifusinite particles typically have
less clear cellular structure than fusinite particles (ICCP, 2001).
Inertodetrinite (Fig. 2C and E) is classified by the ICCP (2001) as a
charcoal maceral which is not larger than 10 μm. Particles are formed
by desiccation, attrition or crushing of a larger particle (ICCP, 2001).
Scott and Glasspool (2007, see also Scott, 2010) argued that frag-
mentation during combustion forms small ash-like inertinite parti-
cles that are often transported by wind and are therefore indicative
of regional wildfire activity. Fungal spores and sclerotia (Fig. 2F)
are often preserved in lignite. Charred fungal remains are referred
to as funginite (previously sclerotinite) (ICCP, 2001). Although not
all agree that these remains represent charred material (Hower
et al, 2009), it has been proven that reflectance increases with char-
ring temperature in fungal sclerotia (Figs. S14 e and f in Scott et al.,
2010 auxiliary material). For the purposes of this study uncharred
fungal remains were included in the huminite category.

Inertinite percentages have been obtained from in situ pillars and
crushed samples representing lignite seams sampled at Schöningen. Pre-
vious work has quantified inertinite in in situ pillars using eyepiece grat-
icule grids (Belcher et al., 2005; Collinson et al., 2007; Hudspith et al.,
2012), but there is no standard quantification method and those studies
were very time consuming and labour intensive. In this study a new
line transect method, counting three transects of 504 points each
(Robson et al., 2014), using the ×20 objective, was devised and tested
to quantifymacerals as definedby the ICCP standard classification system.
Twelve points, 50 μm apart, were counted per field of view (600 μm).
Tests on variation around the mean percentage inertinite with different
numbers of points counted showed that, for 500 points, fluctuations are
limited to within ±0.60%. The new method is less time-consuming
allowing for more samples to be studied, and it accounts for variation in
inertinite particle size and distribution through the in situ pillar. Crucially,
the method used is comparable with previous work and industry meth-
odologies. The same counting method was applied to crushed samples
but only one transect of 504 points was counted due to the smaller size
of the sample and the lack of stratigraphic information (e.g. bedding) pre-
served. The same ±0.60% uncertainty applies to all counts.

To facilitate comparisonwithpreviouswork,where countingmethods
are often not stated, tests were undertaken using different counting
methods (Whipple grid, Kötter graticule, Cross hairs). These tests re-
vealed that there canbe up to 5% variationbetween inertinite percentages
obtained from identical transects using the differentmethods. This poten-
tial variation is taken into account when comparing new Schöningen re-
sults with those from the Glasspool and Scott (2010) database.

This work uses complete seams (either in their entirety for thinner
seams or in parts for thick seams) to obtain overall fire activity, a mea-
sure that allows comparison with the database of Glasspool and Scott
(2010); we are not addressing fire frequency here. However it should
be borne in mind that both, high and low fire frequencies could yield
the same ‘seam-average’ and ‘part seamaverage’ inertinite percentages.

4. Results

4.1. Crushed samples

The most common inertinite maceral is inertodetrinite (Fig. 2C and
E), followed by semifusinite (Fig. 2B and D). Fusinite (Fig. 2A–C) and

funginite (Fig. 2F) are the least common sub-macerals. Other than not-
ing the occurrence of some large particles, inertinite size range and dis-
tribution cannot be addressed in crushed samples. There is no clear
relationship between inertinite percentages or percentages of the
huminite macerals, attrinite, textinite and ulminite (maceral data in
supplementary spreadsheet pages 1 + 3).

Crushed samples representing the whole seam contain 1%–15%
charredmaterial (Fig. 3. Supplementary spreadsheet page 6). Both sam-
ple areas reveal high inertinite in seams Main–2 (average 13%, Fig. 3A
and C), varied in seam 3 (4%–9%), low in seam 4 (average 1.5%), high
in seam 5 (average 12%) and low in seams 6 to 9 (average 4%).

Crushed samples from part seams show that the variation within
some seams is as high as the variation between seams (Fig. 3B and D).
As might be expected, there is more spatial and temporal variation in
inertinite in thick seams (Main, 1, 2, 6, 8, 9 range 2%–21%) than in thin
seams (3, 4, 5, L, 7 range 1%–15%). In one set of part seam samples
from thick seam 6, inertinite content varies by 17% (2–19%, Fig. 3B)
but in another it varies by only 2% (4–6%, Fig. 3D). In one set of part
seam samples from thin seam L, inertinite content does not vary (both
2%, Fig. 3B). In seams with overall high inertinite percentages, some
part seam samples have percentages that are as low as those in the
low inertinite content seams (4, L–9). The opposite is not observed;
none of the part seam samples in low inertinite content seams (seam
4, 4%; seam L, 2% seam 7, 6%; seam 8, 5% seam 9, 8%; Fig. 3B and
D) reach the high values of the high inertinite content seams (Main–2,
5 all contain beds with N12% inertinite). In summary, high inertinite
content seams have both higher mean percentages and also larger var-
iability. Therefore, two striking features are revealed by the novel exam-
ination of whole seam and part seam samples. First, a long-term overall
decrease in inertinite percentages is visible from Main seam to seam 9.
Second, imposed on this trend, are dramatic fluctuations in charcoal
percentages between seams, but even more dramatically, within indi-
vidual seams.

4.2. In situ pillars

Semifusinite (Fig. 2B and D centre) is the most common maceral in
all pillars and inertodetrinite (Fig. 2C and E) is the second most com-
mon. Fusinite (Fig. 2A, C and D right) is uncommon in the Schöningen
samples and funginite (Fig. 2F) is the least common maceral, although
funginite percentages increase relative to other macerals in the samples
from the younger seams L, 7, 8 and 9. Discrete bedding planes covered
with charcoal (seams 5 and 6) and large (≥ several mm) charcoal parti-
cles distributed in discrete layers and lenses (Main seam and seam
1) which were observed in the field were interpreted as indicating in-
termittent fire activity by Riegel et al. (2012). Inertinite particles of dif-
ferent shapes and sizes are randomly distributed (Fig. 2C) in the
majority of Schöningen material. However, some pillars contain areas
with high proportions of inertodetrinite particles (Fig. 2E) and laterally
discontinuous charcoal horizons.

Individual pillars contain 2%–19% charredmaterial (Fig. 4A), a slight-
ly larger range of values than those recorded in whole seam crushed
samples (1%–15%). Inertinite percentages are high in seams Main–1
(average 15%), low in seams 3–4 (average 4.5%), higher in seams 5–6
(average 11%) and low in seams L–9 (average 3.5%).

4.3. Macerations

Charcoal abundancewithinmacerated sampleswas estimated using
a semi-quantitative modified ACFOR Domin scale from common to rare
(Fig. 4B). The score of zero for seam3 is explained by the absence of par-
ticles greater than 250 μm in that seam. The overall pattern of charcoal
distribution through the succession is similar to that in the in situ pillars
(Fig. 4A) and crushed samples (Fig. 3). The highest abundances occur in
seams Main and 5 with the lowest abundances in seams L–9.

56 B.E. Robson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 437 (2015) 53–62



5. Discussion

5.1. Value of combined approaches for the study of charcoal

Different information can be obtained by various methods of study-
ing charcoal but there are caveats applicable to each method. By choos-
ing a specific size faction (250 μm–500 μm in this study), comparison of
charcoal abundance betweenmacerated samples is easier, although re-
sults can be misleading when a sample consists solely of small charcoal
(seam 3, Fig. 4B). Low temperature charcoals with low lustre can be
hard to recognise in macerated samples using lightmicroscopy. By con-
trast, petrographic study of inertinite, in polished blocks or in situ pillars,
can identify charcoal across a wide range of charring temperatures
(e.g. fusinite/semifusinite) (Glasspool and Scott, 2013).

Due to the preparationmethod, crushed samples andmacerated sam-
ples preserve no temporal or spatial distribution data and only a restrict-
ed perspective on particle size. In contrast, in situpillars retain evidence of
charcoal particle size and distribution (e.g. banded, clumped or irregular).

However, sampling constraints mean that in situ pillars only repre-
sent part of the seam, and therefore a limited window of fire activity,

whereas a crushed sample can represent either the whole seam or
part of it. Inertinite relative abundance in a high-resolution (every c.
5 cm) study using crushed samples of seam 1 (Inglis et al., in press)
largely matches the lower resolution (part seam) results herein
(Fig. 3B), with higher percentages at the top and lower percentages at
the base of the seam. This indicates that inertinite variation can be ade-
quately documented by lower resolution sampling.

There are benefits and limitations to each individual method. The
combined study of in situ pillars, crushed samples and macerated sam-
ples provides a powerful tool for analysis of charcoal.

5.2. Inertinite macerals, size and distribution: wildfire implications

Amix of particle sizes from N500 μm to less than 10 μm(Fig. 2A, B, D,
E) is visible in the in situ pillars. This indicates that the Schöningen ma-
terial is a record of local wildfire activity (Innes and Simmons, 2000;
Nichols et al., 2000) as well as regional activity (Scott and Glasspool,
2007; Scott, 2010). Semifusinite and inertodetrinite are the most com-
mon inertinitemacerals quantified using both in situ pillars and crushed
samples. Since inertodetrinite is considered to be predominantly wind-

Fig. 2. Representative petrographic images to demonstrate the variety of inertinite (charcoal) macerals recorded from Schöningen lignites. Images obtained under oil using a reflectance
microscope. (A) Fusinite particles with well preserved cellular structure. Large particles of local origin. (B) A large semifusinite (Sf) and fusinite (F) particle. (C) Fusinite particles (arrows)
and inertodetrinite particles (box) in an attrinite/textinitematrix. (D) Partially charred particle (dark grey textinite on the left, pale grey semifusinite in the centre andwhite fusinite on the
right) shows that not all material charred equally in Schöningen wildfires. (E) Inertodetrinite with remnants of cellular structure (arrows), likely evidence of regional wildfire activity.
(F) Fungal sclerotia; uncharred (left) and charred (funginite) (right). (A & B seam 6, D seam 5, E & F seam 1, all from pillars; C crushed sample seam 1).
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Fig. 3. Inertinite (charcoal) percentages from 11 seams at Schöningen, adjacent to simplified log (with seams to scale) adapted from Riegel et al. (2012). Uncertainty of 0.60% applies to all
values (see Section 3.3). (A & C) Average total inertinite percentages in crushed samples representative of a whole seam. Due to the thickness of Main seam and seam 6, and the nature of
access in themine in 2012–2013, the two seamswere collected as upper and lower portions and the inertinite percentages averaged (Main seam 9%–12%, seam 6 2%–11%). In 2005–2010
seam 3was sampled in both areas of themine. Seam Lwas sampled twice in the same area and results averaged (values 3% and 5%. (B and D) Total inertinite percentages in crushed sam-
ples representing parts of seams. Individual parts of seams can contain higher or lower inertinite percentages than thewhole seam sample but seams 4 and L–9 never containmore than 8%
inertinite. Although inertinite content is variable, both whole and part seam samples, collected from two areas of the mine in different field seasons, show a similar pattern, with higher
inertinite percentages in Main seam, seams 1,2 and 5 and lower inertinite in seam 4 and in the later part of the Early Eocene (seams L–9).

Fig. 4. Inertinite (charcoal) percentages from in situ pillars and charcoal abundance from macerated samples from Schöningen, adjacent to simplified log (with seams to scale) adapted
from Riegel et al. (2012). (A) Inertinite (charcoal) percentages obtained from in situ pillars. Uncertainty of 0.60% applies to all values (see Section 3.3) and the maximum error on the
mean is an additional ±0.24% (refer to supplementary spreadsheet page 4 for individual values for each pillar). Due to the thickness of Main seam and seam 6 and the nature of access
in themine, pillars were collected from the upper and lower parts of the seam and results were averaged (Main seam 6%–23%, seam 6 1%–18%). (B) Charcoal particles, released from sam-
ples representing the same bed as the in situ pillars, relative abundance estimated using a semi-quantitativemethod (modified ACFORDomin scale). The 250 μm–500 μm size fractionwas
chosen as it is most likely to represent mainly local wildfire. The pattern of charcoal relative abundance from both methods is very similar to those shown in Fig. 3A and C.
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blown due to its small size (Scott, 2010), it can be used as an indicator of
local and regional high temperature crown fire activity (Clark, 1988;
Clark et al., 1998; Scott, 2010). In situ pillars contain all particle sizes
as all macerals are preserved in their original spatial and temporal con-
text. The single plane of section studiedmightmean that some particles
were cut at an angle or in a position that did not reflect their maximum
size, but the effects would beminimal in this study of three transects in
each pillar.

Inertinite in in situ pillars shows no distinctive distribution pattern
unlike the repeated, multiple scale banding that characterises immedi-
ately pre-PETM fires at Cobham, UK (Collinson et al., 2007, 2009). At
Schöningen inertinite is mostly irregularly distributed in polished pil-
lars, with the occasional discontinuous band in some seams. This rela-
tive homogeneity may explain why pillars representing part of a seam
(Fig. 4A) show a similar inertinite distribution pattern to that in crushed
samples representing whole seams (Fig. 3A).

Areas of rare inertinite suggest that fuel would have accumulated
between periods of fire activity, much as it does in modern fire prone
areas (Pierce et al., 2004). Partially charred particles (Fig. 2D) in the in
situ pillars indicate a brief heating duration or high levels of fuel mois-
ture (Hudspith et al., 2012; Marynowski et al., 2014) as might be ex-
pected for wildfires in peat-forming settings.

5.3. Early Paleogene charcoal from Schöningen and the global Phanerozoic
charcoal record

The high (11–19%, Figs. 3A, C and 4A) early Paleogene levels of
inertinite (charcoal) in some seams at Schöningen are low by compari-
sonwith periods of mid to high fire activity recorded for intervals in the
Paleozoic and Mesozoic by Glasspool and Scott (2010) i.e. the
Permian = mean 44.4%, Late Jurassic = mean 26.1%, Middle
Cretaceous = mean 42.8%. These high inertinite levels in the Paleozoic
and Mesozoic are thought to be a consequence of higher atmospheric
oxygen content which enabled wetter plant material to burn more eas-
ily (Glasspool and Scott, 2010). In the early Paleogene, models suggest
that atmospheric oxygen levels began to stabilise to modern levels, so
the effects of precipitation on wildfires may have increased (Belcher
et al., 2013; Scott et al., 2014). Consequently, in spite of the overall
warm early Paleogene climate, fire activity was reduced compared to
that in the Paleozoic and Mesozoic.

Data from the three early Paleogene bins (Middle to Late Paleocene;
Early Eocene; Middle to Late Eocene) in the Glasspool and Scott (2010)
database, were re-plotted and Schöningen whole seam crushed sample
results were superimposed upon them (Fig. 5). The Schöningen Main
seam and seam 1 may be either earliest Eocene or latest Paleocene
(Section 2.2) but for simplicity Fig. 5 shows their charcoal abundance
superimposed on the Late Paleocene bin. Seam 9 is treated here as late
Early Eocene (Section 2.2).

The database compiled by Glasspool and Scott (2010) displayed a
stepped reduction in inertinite percentages from themiddle Cretaceous
(mean 42.8%) to the present day (mean 4.5%). TheMiddle to Late Paleo-
cene bin has high inertinite percentages (mean 17%), the Early Eocene
bin has lower inertinite percentages (mean 8.6%) and the Middle to
Late Eocene bin has lower percentages still (mean 3.5%). When Main
seam and seam 1 are treated as Paleocene (Fig. 5), inertinite percent-
ages from Schöningen are slightly lower than mean values previously
reported for the Paleocene to Paleocene–Eocene transition interval.
Using the alternative age model, where all seams are Early Eocene, the
high inertinite percentages for Main seam and seam 1 are higher than
previously reported for the earliest Eocene.

Subsequently the inertinite percentages from Schöningen differ
from those in Glasspool and Scott (2010), irrespective of possible alter-
native stratigraphic interpretations for seam 9. Inertinite percentages
fall in seams 3 and 4, with seam 4 differing significantly from
Glasspool and Scott's (2010) dataset (Fig. 5). Seam 4 palynology
shows an increase in palm pollen (Riegel et al., 2012) compared to all

other seams. This might imply that local vegetationwas less flammable,
however low inertinite values also occur higher in the Schöningen se-
quence where there are typical palynological (Riegel et al., 2012) and
huminitemaceral assemblages (maceral data in supplementary spread-
sheet pages 1 and 3). High inertinite percentages characterise seam 5 in
themiddle Early Eocene (possibly at the time of the EECO). These higher
abundances are followed in the middle Early Eocene by a fall in
inertinite in seams L–9 to low percentages characteristic of those re-
ported for the Middle Eocene at Helmstedt (and other sites, unpub-
lished Diploma thesis, Bode, 1994, University of Göttingen—Riegel
et al., 1999, 2012), later Cenozoic records (Glasspool and Scott, 2010)
and modern peat forming environments (Eble and Grady, 1993; Scott
et al., 2014) the average being ~4.3%.

An increase in peat accumulation rates could result in a decrease in
inertinite percentages but without any change in fire activity. This pos-
sibility is very unlikely to explain the decrease in inertinite percentages
in seams L–9 at Schöningen because increased peat growth (hence
higher peat accumulation rate) is more likely during accumulation of
seams Main to 6 when climates were equally wet and included the
warmest intervals (Section 5.4). Furthermore, this explanation is very
unlikely to account for the sustained lower percentages of inertinite
through the remaining Cenozoic, a time of climate cooling (Zachos
et al., 2008).

Fig. 5. Schöningen inertinite (charcoal) in crushed samples representing the whole of a
seam (2005–2013 field seasons) presented in the context of the Glasspool and Scott
(2010) database (pale grey background area with black bars showing 5% variation to ac-
count for different quantificationmethods (see Section 3.3)).Where sampleswere collect-
ed from the same area of the mine in different field seasons, the inertinite percentages
were averaged (seams 3, 5%–9%; seam 4, 1%–2%; seam 6, 5%–6%; seam 9, 2%–4%).
Schöningen inertinite percentages from Main seam and seam 1 are high, consistent with
data from the Glasspool and Scott (2010) database for the Paleocene. Inertinite percent-
ages remain high in the early Early Eocene (seam 2) but fall to a very low value (seam
4), and then rise again in the middle of the Early Eocene (seam 5). Subsequently, (seams
6–9) later Early Eocene inertinite percentages fall to values similar to those of the Middle
and Late Eocene as reported by Glasspool and Scott (2010).

59B.E. Robson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 437 (2015) 53–62



Today, only lowland tropical rain forests and montane rain forests
with an annual precipitation of 2000–3000 mm, evenly distributed
over the year, are inflammable despite high thunderstorm activity
(Goldammer, 1993). High precipitation and humidity have been in-
ferred for the Middle Eocene in Central Europe (Riegel, 2001), allowing
tropical elements to be sustained in the vegetation even though the cli-
matic optimum had already passed. This suggests that low inertinite in
seams L–9may be linked to uninterrupted highly per-humid conditions
preventing the flammability of forest litter.

The varied inertinite pattern at Schöningen suggests that fire activity
fluctuated in the warmest parts of the Early Eocene (including high and
low levels) before reaching consistently low levels from the mid to late
Early Eocene onwards. The Schöningen data indicate that the transition
to the modern low fire world occurred earlier than previously thought
i.e. in the mid–late part of the Early Eocene, not in the Middle Eocene.
Furthermore, the long term Cenozoic trend of falling inertinite levels
(Glasspool and Scott, 2010) is supported by the data from Schöningen.
This is evidence against any major influence of sampling bias in the
Cenozoic part of the Glasspool and Scott (2010) global dataset.

5.4. Climate effects on early Paleogene wildfire

Models suggest that atmospheric oxygen fell to modern levels (21%)
in the Early Eocene (Berner et al., 2003; Zachos et al., 2008; Berner,
2009). Oxygen is a key part of the wildfire triangle (Scott, 2000) with
fire in wet vegetation unsustainable at atmospheric oxygen levels
lower than 23% (Scott et al., 2014). The stabilisation of oxygen levels
in the Early Eocene heralded the first time in Earth's history when oxy-
genwas not the controlling factor onwildfire (Scott et al., 2014); conse-
quently the impact of precipitation (Belcher et al., 2013) and
temperature on wildfire would have increased. Changes in lightning
(due to increased CO2, Belcher et al., 2010), temperature (Westerling
et al., 2006; Marlon et al., 2009; Scott et al., 2014), fuel formation
(Scott, 2000) and moisture (Dimitrakopoulos and Papaioannou, 2001)
can all affect wildfire activity. Increased rainfall would lead to wetter
fuel but also to increased plant growth, which, when coupled with in-
creased temperatures, could increase the burn potential of biomes pre-
viously little affected by wildfire.

Global climate patterns from the Paleocene to the middle Early
Eocene show a long term warming trend on which transient
hyperthermals were superimposed (Zachos et al., 2008; Bijl et al.,
2013). The Paleocene–Eocene thermal maximum (PETM) is one short-
lived hyperthermal. It is marked by (i) a global increase in temperatures
of ~5 ˚C (Dunkley Jones et al., 2013) and (ii) irregularities in the hydro-
logic cycle (Bowen et al., 2004; Sluijs et al., 2006; Tipple et al., 2011;
Handley et al., 2012; Krishnan et al., 2014). Similarly, the warmest cli-
mates of the EECO (c. 49Ma)weremarked by high global temperatures
and changes in global monsoonal activity that affected the distribution
of precipitation (Huber and Goldner, 2012).

It is suggested that the intensity and distribution of precipitation
changed as a result of Paleogene warming (Huber and Goldner, 2012),
with greater moisture transport to high latitudes (Pagani et al., 2006)
and increased precipitation at mid to high latitudes, as evidenced by
Azolla blooms in the Arctic and Nordic seas as far south as Denmark
(Barke et al., 2012). Some areas may also have experienced enhanced
seasonal extremes (John et al., 2008). Plink-Björklund et al. (2014) sug-
gested that extremes in the hydrological cycle were manifested as in-
creased precipitation ‘peakedness’ in the subtropics and mid-latitudes
during hyperthermals,where high intensity rainfall eventswere follow-
ed by drier intervals. A large scale arid/semi-arid, humid, arid/semi-arid
pattern across the PETM is recognisable in clay rich sequences from
Egypt (Khozyem et al., 2013), the Tethys and the Atlantic (Bolle and
Adatte, 2000), continental flood-plain sediments in the Spanish Pyre-
nees (Schmitz and Pujalte, 2007) and complex sedimentological and
isotopic changes in Tanzanian sediments (Handley et al., 2012), sug-
gesting that variability in rainfall was not restricted to one locality.

Main seam to seam 5 at Schöningen, deposited during the warmest
intervals of the early Paleogene (probably including the PETM and in-
cluding the EECO according to the current age model), contains the
highest charcoal relative abundances based on the new petrological ev-
idence from crushed samples (Fig. 3) and in situ pillars (Fig. 4A). The
variability in inertinite in seams 3 and 6 (Fig. 3B andD)may record tran-
sitional periods from higher wildfire activity (Main–2, 5) to lower wild-
fire activity (4, L–9), at least locally and possibly globally. This suggests
that brief drier intervals, following wet periods with increased growth
and fuel load, may have led to increased wildfire activity during the
warmest climates of the Paleogene. One possible modern analogue for
this effect is in the Amazon rainforest (Cochrane, 2003). High fuel
loads and temperatures coupled with lower humidity in periods of
drought caused by modern climate change have increased the number
of high-intensity wildfires (Brando et al., 2014). It is therefore possible
that, although wetter, the warmest climates of the Early Eocene could
have beenmorefire prone than ‘background’ Eocene greenhouse condi-
tions, hence the variation in charcoal abundance between seams Main
to 9 at Schöningen (Fig. 5).

6. Conclusions

Petrological analysis of lignites using crushed samples and in situ
pillars provides detailed quantitative documentation of inertinite
(charcoal) abundance in the Schöningen lignites whilst allowing for
comparability with previous work and industry standards. Large char-
coal particles (≥500 μm) in the rooted autochthonous early Paleogene
lignites at Schöningen are unlikely to have been washed in and there-
fore represent locally occurring wildfires. Small particles, such as
inertodetrinite, which can be easily carried by thewind, may be derived
fromboth local and regionalfires. Themost common inertinitemacerals
quantified using both methods are semi-fusinite and inertodetrinite. In
spite of their varied advantages and disadvantages, all three methods
of analysis (crushed samples, in situ pillars and macerations) show
very similar patterns of relative charcoal abundance through the early
Paleogene of Schöningen.

Despite the early Paleogene greenhouse climate, the highest char-
coal percentages at Schöningen are low in comparison to those recorded
in Paleozoic andMesozoic intervals. By the Eocene, atmospheric oxygen
had stabilised to modern levels, increasing the effect of precipitation on
wildfire. The highest charcoal abundances and greater within seam var-
iability occur during the warmest intervals of the Early Eocene which
also experience episodic precipitation. In the subsequent cooler periods,
low charcoal percentages are recorded which are similar to those of the
later Cenozoic and present day, suggesting that the onset of themodern
low-fire world began earlier than previously thought, in the later part of
the Early Eocene (Ypresian).
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Appendix A. Supplementary data

An overview of the lignite seams, stratigraphic logs and accompany-
ing field images included within the supplementary material (Robson
et al., Paleogenewildfires Schöningen supplementary material) provide
full details on beds and pillar location within each seam studied at
Schöningen for the 2012 and 2013 field season. The individual counts
synthesised in Figs. 3–5 are provided in a supplementary spreadsheet
(Robson et al., Paleogene wildfires Schöningen supplementary spread-
sheet). Page 1, Crushed samples maceral percentages; Page 2, Crushed
samples maceral group percentages; Page 3, In situ pillar maceral per-
centages; Page 4, In situ pillar maceral group percentages; Page 5, In
situ pillar and crushed sample inertinite percentages; Page 6, Crushed
sample inertinite data used in Figs. 3 and 5. This material will be avail-
able on the Royal Holloway University of London “Pure” portal—pure.
rhul.ac.uk/portal. Supplementary data associated with this article can
be found, in the online version, at http://dx.doi.org/10.1016/j.palaeo.
2015.07.016.
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