X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early diverging members of the genus

 DOI:

 DOI:}
10.3732/ajb. 1600177

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Adams, N. F., Collinson, M. E., Smith, S. Y., Bamford, M. K., Forest, F., Malakasi, P., Marone, F., \& Sykes, D. (2016). X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early diverging members of the genus. American Journal of Botany, 103(9), 1657-1677. https://doi.org/10.3732/ajb. 1600177

Published in:
American Journal of Botany

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

American Journal of Botany
 X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early diverging members of the genus
 --Manuscript Draft--

Manuscript Number:	AJB-D-16-00177R2
Full Title:	X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early diverging members of the genus
Short Title:	First fossil seeds of Cissus (Vitaceae) from Africa
Article Type:	Research Paper
Section/Category:	Paleobotany
Corresponding Author:	Neil F. Adams UNITED KINGDOM
Corresponding Author E-Mail:	Neil.Adams.2012@live.rhul.ac.uk
First Author:	Neil F. Adams
Order of Authors:	Neil F. Adams
	Margaret E. Collinson
	Selena Y. Smith
	Marion K. Bamford
	Félix Forest
	Panagiota Malakasi
	Federica Marone
	Dan Sykes
Abstract:	Premise of the study: Fossilized seeds similar to Cissus (Vitaceae) have been recognized from the Miocene of Kenya, though some were previously assigned to the Menispermaceae. We undertake a comparative survey of extant African Cissus seeds to identify the fossils and consider their implications for the evolution and biogeography of Cissus and for African early Miocene paleoenvironments. Methods: Micro-computed tomography ($\mu \mathrm{CT}$) and synchrotron-based X-ray tomographic microscopy (SRXTM) were used to study seed morphology and anatomy. Virtual taphonomy, using SRXTM datasets, produced digital fossils to elucidate seed taphonomy. Phylogenetic relationships within Cissus were reconstructed using existing and newly produced DNA sequences for African species. Paleobiology and paleoecology were inferred from African nearest living relatives. Key results: The fossils are assigned to four new Cissus species, related to four modern clades. The fossil plants are interpreted as climbers inhabiting a mosaic of riverine woodland and forest to more open habitats. Virtual taphonomy explains how complex mineral infill processes concealed key seed features, causing the previous taxonomic misidentification. Newly sampled African species, with seeds most similar to the fossils, belong to four clades within core Cissus, two of which are early diverging. Conclusions: Virtual taphonomy, combined with X-ray imaging, has enabled recognition of the first fossil Cissus and Vitaceae from Africa. Early divergent members of the core Cissus clade were present in Africa by at least the early Miocene, with an African origin suggested for the Cissus sciaphila clade. The fossils provide supporting evidence for mosaic paleoenvironments inhabited by early Miocene hominoids.
Keywords:	Cissus; Hiwegi Formation; liana; Menispermicarpum; microCT; Miocene; paleoecology; seeds; SRXTM; virtual taphonomy

X-rays and virtual taphonomy resolve the first Cissus (Vitaceae) macrofossils from Africa as early diverging members of the genus ${ }^{1}$

Neil F. Adams ${ }^{2,3,10}$, Margaret E. Collinson ${ }^{2,4}$, Selena Y. Smith ${ }^{5}$, Marion K. Bamford ${ }^{6}$, Félix Forest ${ }^{7}$, Panagiota Malakasi ${ }^{7}$, Federica Marone ${ }^{8}$, and Dan Sykes ${ }^{9,11}$
${ }^{2}$ Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK;
${ }^{3}$ Department of Geography, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK;

${ }^{4}$ Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK;
${ }^{5}$ Department of Earth \& Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109, USA;
${ }^{6}$ Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, P. Bag 3, Wits 2050, Johannesburg, South Africa;
${ }^{7}$ Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK; ${ }^{8}$ Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; ${ }^{9}$ Imaging and Analysis Centre, Natural History Museum, London, SW7 5BD, UK.

Running Head

First fossil seeds of Cissus (Vitaceae) from Africa

Footnotes

${ }^{1}$ Manuscript received \qquad ; revision accepted \qquad .
${ }^{10}$ Author for correspondence (e-mail: Neil.Adams.2012@live.rhul.ac.uk)
${ }^{11}$ Current affiliation: School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Acknowledgements

N.F.A. thanks the Palaeontological Association for the award of an Undergraduate Research Bursary (PA-UB201401), which supported this work. M.K.B. thanks the Palaeontological Scientific Trust, South Africa (PAST) for funding a modern plant reference collection. Fieldwork in Kenya in 1981-1982 was undertaken with permission granted by the Office of the President of Kenya in co-operation with Dr. R.E. Leakey, then Director of the National Museums of Kenya, Nairobi (KNM). M.E.C. thanks the University of London Central Research Fund for funding fieldwork in 1981-1982. We would like to thank the Leakey Foundation for financial support to M.E.C. and M.K.B. in 1980-1982 and 2005-2006, respectively. The authors thank: the Royal Botanic Gardens, Kew; the Botanic Garden Meise, Belgium; the National Museums of Kenya, Nairobi (KNM); and the Natural History Museum, London (NHMUK), for access to specimens. The SRXTM work was performed on the TOMCAT beamline at the Swiss Light Source (SLS), Paul Scherrer Institut, Switzerland. We also thank the NHMUK for use of their $\mu \mathrm{CT}$ and VP-SEM facilities and fossil macrophotography; Sven Landrein for logistical support at Kew Herbarium; and Peta Hayes for curatorial assistance at NHMUK. Steven Manchester and one anonymous reviewer are thanked for their helpful and extensive comments, which considerably improved the manuscript.

ABSTRACT

- Premise of the study: Fossilized seeds similar to Cissus (Vitaceae) have been recognized from the Miocene of Kenya, though some were previously assigned to the Menispermaceae. We undertake a comparative survey of extant African Cissus seeds to identify the fossils and consider their implications for the evolution and biogeography of Cissus and for African early Miocene paleoenvironments.
- Methods: Micro-computed tomography ($\mu \mathrm{CT}$) and synchrotron-based X-ray tomographic microscopy (SRXTM) were used to study seed morphology and anatomy. Virtual taphonomy, using SRXTM datasets, produced digital fossils to elucidate seed taphonomy. Phylogenetic relationships within Cissus were reconstructed using existing and newly produced DNA sequences for African species. Paleobiology and paleoecology were inferred from African nearest living relatives.
- Key results: The fossils are assigned to four new Cissus species, related to four modern clades. The fossil plants are interpreted as climbers inhabiting a mosaic of riverine woodland and forest to more open habitats. Virtual taphonomy explains how complex mineral infill processes concealed key seed features, causing the previous taxonomic misidentification. Newly sampled African species, with seeds most similar to the fossils, belong to four clades within core Cissus, two of which are early diverging.
- Conclusions: Virtual taphonomy, combined with X-ray imaging, has enabled recognition of the first fossil Cissus and Vitaceae from Africa. Early divergent members of the core Cissus clade were present in Africa by at least the early Miocene, with an African origin suggested for the Cissus sciaphila clade. The
fossils provide supporting evidence for mosaic paleoenvironments inhabited by early Miocene hominoids.

Key words

Cissus; Hiwegi Formation; liana; Menispermicarpum; microCT; Miocene; paleoecology; seeds; SRXTM; virtual taphonomy.

INTRODUCTION

The volcanic and clastic sediments of the Hiwegi Formation on Rusinga Island, Lake Victoria, Kenya have yielded a rich early Miocene flora and fauna with well over one hundred recorded species, dated to ca. 18-20 Ma (Drake et al., 1988; Andrews et al., 2009; Peppe et al., 2011). The floral assemblage contains fossilized fruits, seeds, twigs, wood, bark, and leaves (Chesters, 1957; Collinson et al., 2009; Maxbauer et al., 2013; Michel et al., 2014), and the faunal assemblage comprises numerous fossil mammals (e.g., Whitworth, 1958; Pickford, 1981; Butler, 1984; Werdelin, 2011), reptiles (e.g., Clos, 1995; Conrad et al., 2013), birds (e.g., Harrison, 1980; Rich \& Walker, 1983) and invertebrates (e.g., Leakey, 1952; Verdcourt, 1963; Thackray, 1994; Pickford, 1995). The fauna also contains several genera of early hominoids (e.g., Le Gros Clark and Leakey, 1951; Andrews and Simons, 1977; Walker and Teaford, 1988; Walker et al., 1993; Harrison, 2002; McNulty et al., 2007; Harrison and Andrews, 2009; Pickford et al., 2009), including Ekembo (previously Proconsul, see McNulty et al., 2015), which mark the transition between Paleogene arboreal primates, thought to inhabit tropical forests (Andrews, 1992; Janis, 1993), and Neogene bipedal hominids, often associated with open savanna grassland (Robinson, 1963; Reed, 1997; Pickford, 2002). Study of the Hiwegi Formation flora is essential to understand the paleoenvironments in which these transitional hominoids evolved.

The fruit and seed flora was partly described by Chesters (1957) from surfacepicked collections, but these lacked a sedimentological and stratigraphic context. This prompted in situ excavations at the new site of R117 (Collinson et al., 2009), where over 360 fruits and seeds were collected, including several specimens tentatively assigned to 'cf. Cissus sp. 1 nov.' (Vitaceae). During that study, three
other morphotypes with similarity to seeds of extant Cissus L. species were recognized among the collections originally studied by Chesters (1957, 1958). If these four fossil records of Cissus can be verified, they would constitute the first records of the Vitaceae in the flora, the earliest reported record of Vitaceae from the African continent, and could provide evidence for arid- or rainforest-adapted taxa in the African Miocene vegetation (De Santo et al., 1987; Verdcourt, 1993; Lombardi, 2000; Manchester et al., 2012a).

Recent molecular phylogenetic analyses of the genus Cissus (Liu et al., 2013; Rodrigues et al., 2014) showed that modern species could be assigned to several distinct clades. All African species fell within the 'core Cissus' clade, but within that were distributed in more than seven distinct clades, two of which also included Asian species (Liu et al., 2013). Many African species were missing from these phylogenies, including those with external seed morphology most similar to the putative Cissus fossils. If the fossils are Cissus, molecular study of these neglected modern species will be essential to place them in their phylogenetic context.

This paper therefore aims to: (i) confirm or refute the identification of Hiwegi Formation fossils to Cissus and, if confirmed, identify the clades to which the fossil species are likely related by comparing external and internal seed morphology of the fossils to extant African species; (ii) place the nearest living relatives of the fossils into the existing phylogenetic framework; and (iii) evaluate the paleoenvironmental and biogeographic significance of these fossils.

MATERIALS AND METHODS

Specimens studied—The fossil fruits and seeds from the Hiwegi Formation are composed of carbonate minerals, which derive from highly alkaline ash erupted from the nephelinite-carbonatite Kisingiri volcano during the Miocene (Bestland et al., 1995; Harris and Van Couvering, 1995), and which replaced biological structures (Collinson et al., 2009). The specimens were collected from the Hiwegi Formation (for wider stratigraphic context see Drake et al., 1988; Collinson et al., 2009) by surface picking and in situ excavation and are stored in collections at the Natural History Museum, London (NHMUK, numbers prefixed V) and the National Museums of Kenya, Nairobi (KNM). Three fossil seed morphotypes in NHMUK, which Chesters (1957, 1958) had placed in the Menispermaceae (due to their bisymmetry, horseshoe-shaped curvature, and sculptured margins), were noted by Collinson to have strikingly similar exterior seed coat morphology to modern African Cissus species, as illustrated in African floras (e.g., Dewit and Willems, 1960; Descoings, 1967, 1972; Verdcourt, 1993). Collinson et al. (2009) also listed several specimens from the R117 site assigned to 'cf. Cissus sp. 1 nov.' (Vitaceae) based on similarity to modern Cissus seeds. All these fossils were re-examined during the current study.

Fifteen modern species of African Cissus and three species of African Cyphostemma (Planch.) Alston, which have comparable seed ornamentation to the putative Cissus fossils, were sampled from loose fruits on herbarium sheets in the Royal Botanic Gardens, Kew Herbarium (K) to study seed anatomy. The most visibly mature and undamaged specimens were selected. Additionally, fruits of Cissus dasyantha were obtained from the herbarium at the Botanic Garden Meise, Belgium (BR). Herbarium sheet information for the species sampled is provided in Appendix S1 (see Supplemental Data with the online version of this article).

Macrophotography and VP-SEM—Photographs of the specimens described by Chesters $(1957,1958)$ were provided by the NHMUK Photographic Unit. The smaller specimens, assigned to 'cf. Cissus sp. 1 nov.' by Collinson et al. (2009), were examined uncoated under a Leo 1455 vapour pressure scanning electron microscope (VPSEM) at the Imaging and Analysis Centre, NHMUK. Specimens were placed loose onto a sheet of black paper in a small tray, moved into appropriate orientation and turned over using a fine (size 00000) artist's brush. A small amount of Blu-Tack $®$ (Bostik, Paris, France) was used, when unavoidable, to orient specimens for apical and basal views. Images were obtained using the back scatter detector (BSD), a chamber pressure of $14-15 \mathrm{~Pa}$, current of 20 kV , spot size 500 and working distance 38-39 mm. Images were adjusted uniformly for contrast and brightness using Adobe Photoshop CS2 or CS6.

Synchrotron-based X-ray tomographic microscopy (SRXTM)—The

 traditional method of boiling and scrubbing modern fruits to study their seeds is problematic. Depending on tissue toughness, seed features may not be revealed in a repeatable or comparable manner across different species or genera. Cutting or histological sectioning to study internal anatomy also has limitations: it is destructive, may introduce artefacts (tears, gaps), and multiple planes of section through the same specimen cannot be acquired. X-ray imaging solves these problems because multiple planes of section through a single specimen can be easily and nondestructively obtained (e.g., Smith et al., 2009). Modern Cissus and Cyphostemma fruits were scanned using SRXTM, as this technique provides the necessary quality of resolution to enable distinction of cellular details in the fruit wall and seed coat layers for systematic study and for virtual taphonomy (Smith et al., 2009; Collinson et al., 2013). The SRXTM was performed on the TOMCAT beamline at the Swiss LightSource, Paul Scherrer Institut, Villigen, Switzerland (Stampanoni et al., 2006). Specimens were mounted onto brass pin stubs using polyvinyl acetate glue and were scanned during one session of beamtime in July 2014. X-rays transmitted by the specimens were converted into visible light by a 300μ m-thick Ce-doped LAG scintillator screen. A microscope objective of $1.25 \times$ or $2 \times$ (depending on fruit size) magnified the projection data, which were then digitized by a high-resolution scientific CMOS camera (PCO.edge; PCO GmbH, Kelheim, Germany), giving a resultant voxel size of 3 to $5 \mu \mathrm{~m}$. The energy was set at 17.5 keV and the exposure time per projection was 50 ms . For each scan a total of 1501 projections (2560×2160 pixels with PCO.edge camera) were acquired over 180°. Reconstruction algorithms were then used to combine the projections and obtain a three-dimensional volume, reconstruction was performed on a dedicated Linux PC cluster using a highly optimized routine based on the Fourier transform method and a gridding procedure (Marone et al., 2010; Marone \& Stampanoni, 2012). Multiple stacked scans were used if the specimens did not completely fit within the field of view. 3D datasets were visualized, and images and videos were captured, in Avizo 8.1 (FEI Visualization Science Group, Bordeaux, France). Images were adjusted uniformly for contrast and brightness using Adobe Photoshop CS2 or CS6. Videos of digital SRXTM tomograms in transverse section (DTS) through fruits of each of these modern species are available from the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.g9r36).

Micro-computed tomography (μ CT)—Externally visible ventral infolds are a characteristic feature of Cissus seeds (Chen and Manchester, 2011), but are not evident in the fossils (Fig. 1). Information on internal structure of the fossils (including holotypes) is required to test whether these characteristic ventral infolds are: (a)
genuinely absent, which would exclude affinity with Vitaceae; (b) present but externally obscured by a seed coat layer, which would indicate affinity with Cyphostemma (Chen and Manchester, 2011); or, (c) obscured as a consequence of taphonomic processes, such as mineral infilling during fossilization, which would support identification to Cissus. For holotypes and rare fossils this information must be obtained non-destructively. Therefore, three fossil specimens (V33753, V68501, V68506) from collections studied by Chesters $(1957,1958)$ stored in NHMUK and two specimens (R117.1981.314, R117.1981.476) from the R117 site, identified by Collinson et al. (2009) as 'cf. Cissus sp. 1 nov.', housed in KNM were scanned by μ CT using a Nikon Metrology HMX ST 225 at the Imaging and Analysis Centre, NHMUK. Specimens were stabilised by inserting them into blocks of OASIS® Floral Foam (Smithers-Oasis Company, Kent, Ohio, USA) within in a plastic tube. Specimens were wrapped for protection in cling film: a thin film of PVC (polyvinyl chloride) or LDPE (low density polyethylene). A voltage of 200 kV was used with a current of $180 \mu \mathrm{~A}$, a tungsten reflection target, a 0.5 or 0.25 mm copper filter and an exposure time of 708 ms ; this resulted in a voxel size of $12 \mu \mathrm{~m}$. Four modern Cissus fruits scanned by SRXTM (one C. dinklagei, one C. populnea, two C. integrifolia) were also scanned using $\mu \mathrm{CT}$. This duplicative scanning aimed to ensure that $\mu \mathrm{CT}$ scans of the fossils could be interpreted in the context of directly comparable scans of modern seeds (a comparison of imaging methods is provided in Appendix S2, see Supplemental Data with the online version of this article). A voltage of 125 kV was used with a current of $200 \mu \mathrm{~A}$, a molybdenum reflection target, no filter and an exposure time of 708 ms ; this resulted in a voxel size of 8 to $15 \mu \mathrm{~m} . \mu \mathrm{CT}$ datasets were reconstructed using CT Pro (Nikon Metrology, Tring, UK) and were visualized in

Avizo 8.1. Images and videos were obtained as for SRXTM datasets. Videos are available from the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.g9r36).

Virtual taphonomy—The technique of 'virtual taphonomy', developed by Smith et al. (2009), solves the problem of potential variability in tissue removal with traditional boiling or scrubbing methods in seed preparation. Virtual taphonomy uses X-ray datasets to digitally remove specific tissue or cell layers from modern fruits or seeds, thereby creating digital fossils, the surfaces of which can be directly compared to real fossils to determine which layers are preserved. Digital seed infills can also be produced using this technique, mimicking the mineral infill of fruits and seeds that can occur during fossilization (Smith et al., 2009; Collinson et al., 2013). For modern Cissus populnea Guill. \& M.Brandt, a digital infill of the space inside the inner seed coat (the endotesta) was produced (a 'virtual fossil'), to mimic mineral infill during fossilization. The ventral infolds were then digitally infilled to mimic processes that might have led to mineral obscuring the ventral infolds during fossilization.

Molecular phylogeny—Phylogenetic relationships within Cissus and the placement of species assigned to this genus within Vitaceae were assessed using available sequence data from the plastid genome (trnL intron, trnLF spacer, atpB$r b c L$ spacer, trnC-petN spacer and rps16 intron), as well as newly produced sequences of trnLF and rps16 for eight African Cissus species with seeds most similar to the putative Cissus fossils, which were not represented in previous molecular phylogenetic studies (see Appendix 1). Sequence data obtained from public repositories comprise 91 Cissus species and 92 species from other genera of Vitaceae (see Appendix 2).

Total genomic DNA was extracted using a standard CTAB-based protocol (Doyle and Doyle, 1987) and purified using a combined caesium chloride/ethidium
bromide gradient and dialysis procedure. The trnL intron/trnL-F spacer and the rps16 intron were amplified using the primers designed by Taberlet et al. (1991) and Shaw et al. (2005), respectively. Further details regarding the polymerase chain reactions, amplification procedures, PCR product purifications, and cycle sequencing reactions are provided in Appendix S3, see Supplemental Data with the online version of this article.

Matrices (including sequences obtained from public repositoiries and those produced for the present study) were aligned using MUSCLE (Edgar, 2004) in Geneious; alignments are available from TreeBASE (https://treebase.org; study ID 18491). A phylogenetic analysis was performed on a combined matrix using the maximum likelihood criterion as implemented in the programme RAxML v8.1.24 (Stamatakis, 2014) using the rapid bootstrap algorithm with 1000 replicates and a search for the best-scoring tree. Divergence time estimates were obtained using the Bayesian inference approach implemented in the package BEAST v.1.8.2 (Drummond and Rambaut, 2007). All analyses were run on the Cipres Science Gateway portal (www.phylo.org). Further details of the phylogenetic analyses are provided in Appendix S3, see Supplemental Data with the online version of this article.

Calibration was performed using three fossils. The first is the oldest known fossil securely identified to the Vitaceae family (Indovitis) from the latest Cretaceous/earliest Paleogene Deccan traps of India (ca. 66Ma, based on radiometric dating and biostratigraphy; Manchester et al., 2013) and was used as calibration on the crown node of subfamily Vitoideae (calibration A), comprising all genera of Vitaceae except the genus Leea, which is assigned to subfamily Leeoideae. A lognormal distribution was used, which allows the age to vary (given
the uncertainty in fossil age estimation and given that a fossil's age is considered a minimum age for a given group), with an offset value of 65 and a standard deviation of 1.0. The second calibration point comes from fossil seeds assigned to Ampelocissus parvisemina Chen \& Manchester from the late Paleocene of North America at the Beicegel Creek locality of the Sentinel Butte Formation, Fort Union Group, North Dakota (Chen and Manchester, 2007), considered by Zetter et al. (2011) to be late Paleocene (61.7-56.8 Ma) in age based on molluscan and mammalian (Kihm and Hartman, 1991; Hartman and Kihm, 1995) biostratigraphy and pollen zonation (Nichols and Ott, 1978). It was assigned to the stem node of the clade comprising genera Ampelocissus Planch., Nothocissus (Miq.) Latiff, Parthenocissus Planch., Pterisanthes Blume, Vitis L., and Yua C.L. Li, following Nei et al. (2012) and Liu et al. (2016) (calibration B). As for the previous calibration, a lognormal distribution was used, with an offset value of 55.8 and a standard deviation of 1.0. The third calibration point is the oldest fossil unequivocally assigned to genus Cissus, from the Belén flora (North Coastal Peru) of the Oligocene, with a maximum age of 30-28.5 Ma based on diatom biostratigraphy (Manchester et al., 2012a). This fossil has features shared with species from Morphotype 1 and the Cissus integrifolia clade (see below); it was therefore assigned to the stem node of this group (calibration C) with a lognormal distribution with an offset value of 27.5 and a standard deviation of 1.0.

Extant Cissus seed morphological information-In addition to the sixteen SRXTM datasets of African Cissus seeds most similar to the Hiwegi Formation fossils, published seed illustrations and descriptions were sourced, where available, for all African Cissus species included in the molecular phylogeny (Table 1 and Appendix S4, see Supplemental Data with the online version of this article).

Together these data were used to determine the modern species with seeds most similar to those of the fossils and to place these nearest living relatives into the existing phylogenetic framework.

Ecological and biogeographic information-Data on the habit, habitat and biogeographic distributions of extant Cissus species were gathered for extant species in clades containing similar seed morphotypes to the fossils (Table 2). Georeferenced occurrence data from illustrated herbarium sheets were obtained from the Global Biodiversity Information Facility (GBIF, 2013) and floras, and other herbarium sheets were also used. Herbarium sheet sources are given in Appendix S5, see Supplemental Data with the online version of this article.

SYSTEMATICS

Definitions of lateral, ventral, dorsal, apical and basal views and seed height, width and dorsiventral dimension are given in Appendix S6 (see Supplemental Data with the online version of this article).

Family-Vitaceae Juss. 1789.
Genus-Cissus L. 1753.
Species—Cissus crenulata (Chesters) Adams, Collinson, S.Y. Smith \& Bamford comb. nov.

Basionym—Menispermicarpum crenulatum Chesters 1957 (pl. 19, figs. 19, 20).

Emended diagnosis-Seed bilaterally symmetrical, 19 mm in dorsiventral dimension, laterally flattened, sub-oval to D-shaped in lateral view, narrowly elliptical and 7 mm wide in apical and basal views, and elliptical in ventral view. Center of
lateral face crossed by four pronounced, long ridges radiating from adjacent to the ventral infolds; longest ridge almost as long as seed; curved ridge, 2-3 mm from dorsal and basal margins of lateral faces, delineates faceted marginal area; prominent median ridge (rib perichalaza) extends from beneath ventral infolds, around base, over dorsal margin, and almost full length of apical margin as far as ventral infolds. Upper portion of ventral surface concave, forming acute angle with long axis of seed; pair of very deep, narrow ventral infolds present.

Holotype-Seed—V33753 (Fig. 1A-D; μ CT DTS video available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36).

Excluded specimens-KNMP-RU7787 (8 specimens with field number $60 * 52$, formerly P. B. 8, designated as paratypes of Menispermicarpum crenulatum by Chesters, 1957).

Type locality—Rusinga Island, Lake Victoria, Kenya.
Geological horizon and age-Hiwegi Formation, early Miocene.
Repository—Natural History Museum, London, U.K.
Description-The seed is bilaterally symmetrical around a prominent median perichalazal rib (Fig. 1B, C), laterally flattened with a height/width ratio of 1.7 (Fig. 1A, B), sub-oval to D-shaped in lateral view (Fig. 1A), 19 mm in the dorsiventral dimension and 11 mm in height, narrowly elliptical and 7 mm wide in apical (Fig. 1B) and basal (Fig. 1C) views, and elliptical in ventral view (Fig. 1D). The seed apex is rounded, with no indication of an apical notch or chalazal grooves (Fig. 1A-C), and the seed narrows to the ventral margin (Fig. 1A-C). The seed ornamentation is most clearly visible on one lateral face (Fig. 1A). A curved ridge, 2-3 mm from the basal and dorsal margins of the lateral faces, delineates a faceted outer margin with facets spaced at 2.5 to 4.5 mm (Fig. 1A). There are short ridges (ca. 2 mm long), roughly
perpendicular to the long curved ridge, within the outer margin, which define the facets (Fig. 1A). There are at least four ridges crossing the center of the lateral face, with one long (10 mm) ridge perpendicular to the ventral surface, and three curved ridges, which radiate away from the ventral surface towards the basal margin, abutting the curved ridge (Fig. 1A). The reverse lateral face is partly obscured by mineral encrustation in the holotype (the only specimen), making the ornamentation less clear. Nevertheless, there are clearly at least three ridges crossing the center of the face radiating from the ventral surface, with one longer and more pronounced than the others. In lateral view, the upper portion of the ventral surface is nearly straight for three-quarters of its length but the basal-most part is indented, forming an angle of ca. 65° with the long axis of the seed (Fig. 1A). The seed narrows into a rounded point on the ventral surface, possibly equivalent to the beak in typical Vitaceae (see fig. 1 in Chen and Manchester, 2011). The lateral flattening, nearstraight ventral surface and sub-oval, or near elliptical, outline give the seed a very different shape from typical Vitaceae genera (e.g. Chen and Manchester, 2011). Externally the ventral infolds are only tentatively identifiable from a pink mineral infill from the apical and ventral views (Fig. 1B, D). However, in $\mu \mathrm{CT}$ digital transverse section (DTS), a pair of very deep (4.5 mm) and narrow (0.5 mm) ventral infolds are clearly delineated by a very thin gap (black in Fig. 2C) between the inferred outer surface of the endotesta and the mineral infill of the infolds (outlined in solid yellow in Fig. 2D).

Comments—Seeds of modern Cissus integrifolia (Baker) Planch. are very similar to the holotype of C. crenulata, being narrow, laterally flattened and sub-oval in lateral view with a line of bisymmetry passing through a median longitudinal rib perichalaza and having a similar seed coat ornamentation. However, the greater
number of ridges across the lateral faces and different orientation of the ventral surface relative to the long axis of the seed in Cissus integrifolia support the recognition of a separate species. Chesters (1957) listed P. B. 8 as a paratype of Menispermicarpum crenulatum. Currently the number KNMP-RU7787 (P. B. 8) includes eight specimens, which have here been transferred to Cissus andrewsii sp. nov. (see below). Therefore, Cissus crenulata is represented only by a single specimen.

Species—Cissus andrewsii Adams, Collinson, S.Y. Smith, \& Bamford sp. nov.
Etymology—The species epithet "andrewsil" is named in honor of Dr. Peter Andrews, in recognition of his extensive work on the Kenyan Miocene and the invaluable support he provided, which enabled one of us (Collinson) to undertake fieldwork on Rusinga and Mfangano Islands in 1980-1981.

Diagnosis—Seeds bilaterally symmetrical, 16-19 mm in dorsiventral dimension, laterally flattened, sub-oval in lateral view, narrowly elliptical and 5-8 mm wide in apical and basal views, elliptical in ventral view. Centers of lateral faces ornamented by 4-5 short ridges in radial pattern; curved ridge $1-2.5 \mathrm{~mm}$ from margins of lateral faces extends around most of seed and delineates faceted to reticulate marginal area; prominent median ridge (rib perichalaza) extends from base of ventral surface, around base, over dorsal surface, and almost full length of apical surface. Upper portion of ventral surface forms acute angle with long axis of the seed. Pair of deep, wide ventral infolds present.

Holotype hic designatus—Seed—V68501 (Fig. 1E-H; μ CT DTS video available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36).

Type locality—Rusinga Island, Lake Victoria, Kenya.

Paratypes—V68500 (Fig. 1I-J); V68502 (Fig. 1K-L); KNMP-RU7787 (8 specimens with field number 60*52, formerly P. B. 8, previously listed as paratypes of Menispermicarpum crenulatum by Chesters, 1957; re-examined for this study by Bamford).

Geological horizon and age—Hiwegi Formation, early Miocene.
Repository—Natural History Museum, London, U.K. (holotype and paratype specimens with prefix V); National Museums of Kenya, Nairobi, Kenya (other paratypes).

Description-Seeds are bisymmetrical around a prominent median perichalazal rib (Fig. 1H, J) and vary from 16 to 19 mm in dorsiventral dimension, 11 to 15 mm in height and 5 to 8 mm in width (Fig. 1E-L). Seeds are laterally flattened with height/width ratios of 1.9-2.4 and are narrow in apical and basal views (Fig. 1G, $H, J, L)$. The seed apex is rounded, with no indication of an apical notch or chalazal grooves (Fig. 1E-G), and narrows to the ventral margin (Fig. 1F, G). The ventral surface is slightly rounded, not straight (Fig. 1F, K). The lateral surfaces have a curved ridge, delimiting a sculptured outer margin, which extends from approximately half way along the apical margin, around the dorsal margin, and fully along the basal margin (Fig. 1F). The sculptured marginal band is faceted, facets spaced at 2 to 3.5 mm , and ridged with ridges sometimes fusing to form a reticulum (Fig. 1F, I, K). The central areas of the lateral faces are ornamented by four to five short ($2-3 \mathrm{~mm}$) ridges in a radial arrangement (Fig. 1F). Where undamaged, the upper portion of the ventral surface forms an angle of 52 to 55 degrees with the long axis of the seed (Fig. 1F, K). The ventral infolds are not visible on the outside of the seed (Fig. 1E, G, L) but by using $\mu \mathrm{CT}$, deep (2.5 mm), broad (0.6 mm) ventral infolds can be identified in V68501 (Fig. 2F) by differences in X-ray attenuation (grey level) due to variation in
mineral density and mineral texture in the infold infills. There is a very clear gap (black in Fig. 2E) demarcating the inferred original position of the endotesta outer surface in the areas away from the infolds, where endotesta would have been originally thicker based on observations in modern seeds. Some additional outer mineral (possibly representing exotesta or fruit wall remnants) is also present in the holotype (Fig. 2E).

Comments-In her unpublished thesis, Chesters (1958) assigned the specimen shown in Fig. 1E-H (V68501) to Menispermicarpum crenulatum, here revised to Cissus crenulata, but there are clear differences between C. crenulata and V68501, supporting assignment of this specimen, and other similar specimens, to a new species. Although there is now only a single specimen of Cissus crenulata (making it impossible to assess intraspecific variation), there are eleven specimens of C. andrewsii, all with consistent morphology distinct from that of the single specimen of C. crenulata. In Cissus andrewsii the central portion of the lateral faces is crossed by short ridges in a radial pattern, unlike Crenulata, and the lateral faces have a greater number of short transverse ridges in the outer margins, some of which fuse to form a reticulum. In addition, the curved ridge, delineating the sculptured margin from the central flat area, extends further down the ventral surface and the ventral margin is curved not straight. Cissus andrewsii is therefore more similar to seeds of modern Cissus dasyantha Gilg \& M.Brandt than C. integrifolia, but is sufficiently different from these extant species to warrant assignment to a new species, and differs in several ways from the fossil C. crenulata.

Species—Cissus rusingensis Adams, Collinson, S.Y. Smith, \& Bamford sp. nov.

Synonymy—'cf. Cissus sp. 1 nov.' in Collinson et al. (2009).
Etymology—The epithet "rusingensis" refers to the type locality on Rusinga Island from which the specimens were collected during in situ excavations.

Diagnosis-Seeds bilaterally symmetrical, 7-8 mm in dorsiventral dimension, slightly laterally flattened, sub-rounded to pyriform in lateral view, broadly elliptical in apical, basal and ventral views. Lateral faces ornamented by ridges and reticula with 7-11 wide muri radiating to margins and enclosing lumina in central area; prominent median ridge (rib perichalaza) extends from ventral margin, around base, over dorsal surface, and almost full length of the apex. Upper portion of ventral surface forms acute angle with long axis of the seed. Pair of deep, very wide ventral infolds present.

Holotype hic designatus—Seed—R117.1981.314 (Fig. 1M-O; μ CT DTS video available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36).

Type locality—R117 site (see Collinson et al., 2009), Rusinga Island, Lake Victoria, Kenya.

Paratypes—Seeds—KNMP-RU9647 (field number R117.1981.422); R117.1981.476 (Fig. 1P-R; μ CT DTS video available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36); R117.1981.604 (Fig. 1S-U); R117.1981.605 (Fig. 1V-X).

Geological horizon and age—Grit Member, Hiwegi Formation, early Miocene.

Repository—National Museums of Kenya, Nairobi, Kenya (KNM).
Description-Seeds are bisymmetrical around a prominent median perichalazal rib (Fig. 1N-O, Q-R, T-U, W-X) and they vary from 7 to 8 mm in dorsiventral dimension, 5 to 6 mm in height, and 3 to 4 mm in width (Fig. 1M-X). The
seeds are laterally flattened with a height/width ratio varying between 1.5 and 1.8 and are broadly elliptical in apical and basal views (Fig. 1N, O, Q, R, T, U, W, X). The seeds have a rounded apex (Fig. 1M, P, S, V) but are variable in their lateral shape (Fig. 1M, P). The perichalazal rib extends around less of the specimen in R117.1981.476 (Fig. 1P) and R117.1981.604 (Fig. 1S), resulting in a reduced lateral width higher up the seed, a longer ventral projection and a more pyriform shape. By contrast, the holotype (Fig. 1M) and R117.1981.605 (Fig. 1V) are both sub-rounded with only small ventral projections. The lateral surfaces have a reticulate ornamentation with one or two centrally positioned lumina (Fig. 1M, P, S, V) and 7 to 11 muri or ridges ranging in width from 0.2 to 0.6 mm (e.g., Fig. 1M). Some ridges radiate to the edges of the specimen and join up with the strong perichalazal rib producing marginal lumina (Fig. 1O, X). Others terminate before reaching the margin without forming a reticulum (bottom right in Fig. 1S; top left in Fig. 1V), resulting in a radiating pattern of marginal ridges and unenclosed marginal depressions. The upper portion of the ventral surface forms an angle of 35 to 55 degrees with the long axis of the seed (Fig. 1M, P, S, V). The ventral infolds, although not externally visible (Fig. $1 \mathrm{~N}, \mathrm{Q}, \mathrm{T}, \mathrm{W}$), are readily identifiable in the holotype by differences in contrast and mineral density in $\mu \mathrm{CT}$ scans (Fig. 2G). A distinct pale area (highlighted yellow in Fig. 2 H) marks the position of the embryo cavity, while the deep (1.5 mm) and very broad (0.75 mm) ventral infolds are infilled with mineral with lower X-ray attenuation and hence darker grey colour (Fig. 2H).

Comments-Cissus rusingensis is distinctive in lacking a distinct curved ridge delineating a marginal region and in having muri in the central area of the lateral faces forming a reticulum. This species is very similar to seeds of modern Cissus lebrunii Dewit, but C. rusingensis has fewer muri and at most two (rather than three)
centrally positioned lumina.

Species—Cissus psilata Adams, Collinson, S.Y. Smith, \& Bamford sp. nov.
Etymology—The epithet "psilata" derives from the ancient Greek adjective "psilós", meaning "bare" or "smooth", and refers to the lack of seed coat ornamentation on the smooth surface of the lateral faces.

Diagnosis—Seed bilaterally symmetrical, 7.5 mm in dorsiventral dimension, sub-rounded in lateral view, broadly elliptical in apical, basal, and ventral views. Seed smooth, lacks external ornamentation (psilate), except for prominent median ridge (rib perichalaza) that extends all around dorsal surface, over apex, and almost full length of ventral surface. Base of ventral surface concave, forming acute angle with long axis of seed. Pair of very short, narrow ventral infolds present.

Holotype hic designatus—Seed—V68506 (Fig. 1Y-BB; μ CT DTS video available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36).

Type locality—Rusinga Island, Lake Victoria, Kenya.
Geological horizon and age-Hiwegi Formation, early Miocene.
Repository-Natural History Museum, London, UK.
Description-Seed inferred to be originally bilaterally symmetrical around a prominent median perichalazal rib, although the single specimen is slightly deformed (Fig. 1Z, AA), probably due to abnormal development in life or distortion during fossilization. The seed is sub-rounded in lateral view (Fig. 1Y), 7.5 mm in dorsiventral dimension and 6 mm in height, and broadly elliptical in apical and basal (Fig. 1Z, AA) views, 4.5 mm in width. The seed is not laterally flattened and has an inflated morphology with a height/width ratio of 1.3 . The perichalazal rib is ca. $0.3-0.45 \mathrm{~mm}$ thick around the dorsal and basal margins (Fig. 1Y, Z) but thicker at the seed base
(ca. 0.8 mm), forming a strong point (Fig. 1Y, AA), equivalent to the beak in typical Vitaceae (see fig. 1 in Chen and Manchester, 2011). The lateral surfaces are smooth (Fig. 1Y). The upper portion of the ventral surface forms an angle of 45 degrees with the long axis of the seed (Fig. 1Y). The ventral infolds are not visible on the outside of the seed (Fig. 1Z, BB). $\mu \mathrm{CT}$ scans of the holotype (Fig. 2I) show very little internal information compared to the other fossils, except for two very short (less than 0.5 mm) grooves at the base of the ventral surface (Fig. 2J), which correspond to the position of the ventral infolds characteristic of Cissus.

Comments-In her unpublished thesis, Chesters (1958) suggested that V68506 could be assigned to the genus Menispermicarpum as a new, but never published, species. However, the fossil morphology differs from endocarps of Menispermaceae. It is almost identical to seeds of modern Cissus petiolata Hook.f., differing in the greater extent of the rib perichalaza on the dorsal surface. In modern Cissus petiolata seeds, the ventral infolds are very shallow and short which, in combination with mineralization effects, can explain the very limited evidence for this diagnostic feature in V68506 (Fig. 2J).

RESULTS

Identification of fossils to genus Cissus-The lack of cellular and tissue detail in the fossils (Fig. 2C-J), and the complexities of mineralization during fossilization, make it difficult to judge if the external morphology of a fossil represents the external morphology of a living equivalent. The SRXTM videos of modern Cissus seeds (available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36) show that the inner and outer surfaces of the endotesta are parallel to one another and hence a mineral infill of the endotesta will
have a very similar external morphology to a mineral replacement of the endotesta itself. Therefore, it is justifiable to compare the external surface of the Hiwegi Formation fossils with that of modern seeds for purposes of identification. These comparisons show that several modern African Cissus species have seeds with almost identical shape and ornamentation to the Hiwegi Formation fossil seeds (see Phylogenetic context of seed morphotypes). However, the ventral infolds that characterize modern Cissus seeds are not visible on the fossils. The taphonomy of the fossils may explain the absence of these key features.

A novel approach in virtual taphonomy was used to produce a digital infill of the endotesta of a modern Cissus seed (Fig. 3A). This showed all the characters typical of Cissus seeds (i.e., a long linear chalaza, 'perichalaza'; a thickened ridge of seed coat along the perichalaza 'perichalazal rib'; deep, narrow, linear ventral infolds). Digital infilling of the ventral infolds produced a digital fossil comparable to the real Hiwegi Formation fossils (Fig. 3B). This virtual taphonomy suggests a twostage fossilization process with an initial infilling of the endotesta (and perhaps some mineral replacement of organic tissues) followed by a later stage of infilling of the ventral infolds. $\mu \mathrm{CT}$ imaging supports this hypothesis as mineral-infilled ventral infolds can be recognized (Fig. 2C-J) in digital sections through the fossils (albeit more clearly in some specimens than others).

The only other modern genus including seeds similar to Cissus is Cyphostemma, some seeds of which may be laterally flattened and have somewhat similar ornamentation. Unlike Cissus (Fig. 4A) the ventral infolds on extant Cyphostemma seeds are externally concealed by extra layers of endotestal sclereids (Chen and Manchester, 2011; Fig. 4B). If the fossils were originally Cyphostemma seeds with the endotesta infilled by mineral during initial stages of fossilization, then
the spaces enclosed by the endotesta over the ventral infolds would have been infilled at the same time as the main area within the endotesta. However, $\mu \mathrm{CT}$ images of the fossils show mineral infills of the ventral infolds that are distinct from other mineral infill within the endotesta (Fig. 2C-H) indicating infill during a later stage of fossilization.

The combined data show that four African fossil seed morphotypes conform to the genus Cissus in all characters that can be determined from the fossils. The complex taphonomy and concealment of key features diagnostic of the genus explain the original taxonomic misidentification to the Menispermaceae.

Phylogenetic relationships within Cissus-In our maximum likelihood analysis, species of Cissus are found in three distinct groups (Fig. 5; Appendix S7, see Supplemental Data with the online version of this article): the Cissus striata clade (81\%/0.94 [hereafter, bootstrap support/Bayesian posterior probabilities]), the Cissus trianae clade ($<50 \% / 0.25$), and the core Cissus clade ($60 \% / 1.0$), as previously identified by Rodrigues et al. (2014). Within the core Cissus clade in our analysis, the early-diverging lineages comprise only African species (Fig. 5). The African species Cissus barbeyana, C. sagittifera and C. floribunda form a clade (the Cissus barbeyana clade; $100 \% / 1.0$) sister to the remainder of the core Cissus clade, in which the Cissus integrifolia clade (C. integrifolia + C. populnea; 100\%/1.0) is sister to two main clades that comprise the rest of the species in genus Cissus. In the first of these two main clades (100\%/1.0) only eight of 35 species in our analysis are not African; whilst only seven of the 49 species in the second clade are African (Fig. 5). The topologies and support values obtained with the maximum likelihood (Fig. 5) and Bayesian analyses (Appendix S8, S9, and S10, see Supplemental Data with the online version of this article) do not present well-supported topological discrepancies.

The divergence time analyses estimated that the core Cissus clade diverged 57.9 Ma (highest posterior density (HPD) 55.9-64.0 Ma; 95\% HPD intervals of age estimates are provided in Appendix S11, see Supplemental Data with the online version of this article), in the late Paleocene (Appendix S8, see Supplemental Data with the online version of this article), and started to diversify 41.5 Ma (HPD 31.6-51.0 Ma), in the late middle Eocene (Appendix S9, see Supplemental Data with the online version of this article).

Phylogenetic context of seed morphotypes-Seeds of four distinct Cissus species are now recognized from the early Miocene Hiwegi Formation. Given that claims of Vitaceae pollen from the Oligocene of Cameroon remain unconfirmed (Salard-Cheboldaeff, 1978, 1981; Muller, 1981), these seeds represent the first confirmed fossil record of Vitaceae and of the genus Cissus in Africa. The four fossil species represent distinct morphotypes, which are also found in seeds of extant species (Table 1), as revealed by SRXTM imaging of modern fruits and by a literature survey of published seed descriptions. The phylogenetic position of these extant species provides a phylogenetic context for the early Miocene fossils.

Morphotype 1-Cissus crenulata (Fig. 1A-E) has laterally flattened, sub-oval seeds with a faceted marginal area, several long radiating lateral ridges and two marginal ridges. The extant species Cissus integrifolia (Fig. 6D, 7A) and C. populnea (Fig. 2A, 6E) share this distinctive morphotype (Table 1). These two species are recovered in our phylogenetic analyses with strong support (100\% BS) as a distinct clade, the Cissus integrifolia clade, which is one of the two earliest-diverging clades in core Cissus (Fig. 5). It is, therefore, likely that Cissus crenulata was a member of the early diverging Cissus integrifolia clade.

Morphotype 2—Cissus andrewsii has seeds that are laterally flattened and
have a ridged and faceted marginal area where ridges sometimes fuse to form a reticulum, two prominent marginal ridges, and short radiating lateral ridges. The extant species Cissus barbeyana (Fig. 6B) and C. dasyantha (Fig. 7B and fig. 13J in Dewit and Willems, 1960) are most similar to C. andrewsii, in that they are slightly laterally flattened ($\mathrm{H}: \mathrm{W}$ ratio of 1.3-1.5) with a similarly ridged and faceted marginal reticulum, two marginal ridges and short radiating lateral ridges (Table 1). Although the sampled specimen of Cissus dasyantha failed to amplify material for phylogenetic analysis, C. barbeyana was found in the basal clade of core Cissus, the Cissus barbeyana clade, with C. floribunda and C. sagittifera (Fig. 5). Seeds of Cissus floribunda (Fig. 6A) and C. sagittifera (fig. 14 in Descoings, 1967) also possess the Morphotype 2 characters, (except that C. sagittifera lacks the ridged and faceted marginal area). This suggests that Morphotype 2 is characteristic of the basal Cissus barbeyana clade and that C. andrewsii can be placed in this clade. Future work determining if Cissus dasyantha is in the C. barbeyana clade would test this hypothesis.

Morphotype 3-Cissus rusingensis has slightly laterally flattened seeds and ridges forming a complete to incomplete reticulum across the lateral faces. Extant species sharing these features (Table 1) include: Cissus lebrunii (fig. 13K in Dewit and Willems, 1960), C. oreophila (pl. 39, fig. 11 in Descoings, 1972), C. sciaphila (Fig. 6H), C. smithiana (Fig. 6G) and C. tiliifolia (Fig. 7C and Verdcourt, 1993).

Cissus sciaphila and C. tiliifolia are found together in the C. sciaphila clade (C. lebrunii did not amplify), with five other African species (C. aphyllantha, C. polyantha, C. quarrei, C. rhodotricha, C. smithiana) and the Asian/Australasian species, C. adnata and C. rostrata (Fig. 5). Seed descriptions suggest these species share most, if not all, of the external morphological features of Morphotype 3 (Appendix S4, see

Supplemental Data with the online version of this article). Cissus polyantha seeds are very variable in surface ornamentation from smooth to extensively ridged (pl. 36, figs. 11-12 in Descoings, 1972; fig. 13H in Dewit and Willems, 1960), also seen in our sampling of two specimens (Appendix S1, see Supplemental Data with the online version of this article). However, one illustration of a ridged specimen (fig. 13H in Dewit and Willems, 1960) falls into Morphtype 3. Morphotype 3 is characteristic of almost all of the species belonging to the Cissus sciaphila clade (and occurs in at least one collection of C. polyantha). This suggests that Cissus rusingensis was an early Miocene member of this clade. Cissus auricoma has seeds of Morphotype 3 but is a member of the C. microdonta-C. auricoma clade (Fig. 5). This being the only species in that clade with Morphotype 3 seeds suggests parallel evolution of seed morphology in this case, although further sampling of both DNA and seed morphology would be needed to confirm this.

Morphotype 4-Seeds of Cissus psilata are sub-rounded with smooth lateral faces almost indentical to seeds of extant C. petiolata (Table 1; Fig. 6M, 7D). Cissus petiolata is found in a clade with seven solely African species (Fig. 5): C. aralioides, C. oliveri, C. polita, C. rondoensis, C. rotundifolia, C. sylvicola, C. welwitschii. Of these, Cissus aralioides (Fig. 6L), C. rotundifolia, C. sylvicola and C. welwitschii have Morphotype 4 seeds (Appendix S4, see Supplemental Data with the online version of this article). Cissus oliveri, with coarsely pitted seeds and very strong radial and lateral ribs (Verdcourt, 1993), and C. rondoensis, with seeds bearing two to three, faint transverse ridges (Verdcourt, 1993), lack the smooth seed coat typical of Morphotype 4. These two species occupy contrasting habitats to the rest of the clade (Table 2), so contrasting seed morphology may reflect different environmental pressures.

Extant species in the Cissus pseudoguerkeana-C. albiporcata clade, for which seed descriptions were available, also share seed Morphotype 4: C. faucicola and C. quadrangularis have smooth seeds (Appendix S4, see Supplemental Data with the online version of this article), and C. cactiformis also has the smooth seed coat (Verdcourt, 1993). Furthermore, the majority of species in the Cissus elongata-C. subtetragona clade (Fig. 5) share Morphotype 4 characters (Appendix S4, see Supplemental Data with the online version of this article). This evidence suggests that Morphotype 4 occurs throughout the broader Cissus petiolata-C. albiporcata clade (Fig. 5), and suggests that C. psilata belongs in this clade.

Further morphological and molecular analyses, with expanded geographic and taxonomic sampling (including those species that failed to amplify for this study), are needed to fully evaluate the systematic significance of seed morphotypes. This study focused on modern African species to place the African Miocene fossils in context. Based on extant species with morphologically comparable seeds, and their phylogenetic position, species from four clades of Cissus (or from the ends of their stem lineages) were present during the early Miocene in East Africa. These species were related to the two early-diverging clades of core Cissus (the Cissus integrifolia and C. barbeyana clades), and two later-diverging clades with mainly African species today, the C. sciaphila clade and the C. petiolata-C. albiporcata clade (Fig. 6).

Fossil plant biology and ecology—Habit and habitat data (Table 2) for nearest living relatives of the fossil Cissus (Fig. 6) can be used to consider the likely paleobiology and paleoecology of the fossil plants. In the Cissus integrifolia clade, the plants are lianas or herbaceous climbers in wide-ranging habitats, from evergreen forest and woodland to bushland and savanna grassland. Members of the Cissus barbeyana clade are herbaceous to woody lianas and predominantly occupy
rainforest, gallery and riverine forest fringes. Species in the Cissus sciaphila clade are also herbaceous to woody climbers in rainforests or are scrambling shrubs or woody climbers in drier deciduous forest and woodland. The extant species of the Cissus aralioides-C. albiporcata clade are herbaceous to woody lianas or climbing shrubs, a number of which are succulent (C. aralioides, C. cactiformis, C. petiolata, C. quadrangularis, C. rotundifolia, C. sylvicola). They occur in riverine forest and wooded savanna to rocky outcrops, xerophilic thickets in Acacia mixed bushland and grassland (Table 2). The two members of the Cissus petiolata sub-clade with different seeds (see previous section) also differ in their habitat preferences, being most often found in moist rainforests.

These modern ecologies suggest that a diversity of climbers (either herbaceous or woody or both) were present in the early Miocene on Rusinga Island. These climbers may have occupied gallery or riverine forest (Cissus andrewsii related to the C. barbeyana clade) and evergreen forest, through woodland to savanna (C. rusingensis related to the C. sciaphila clade and C. crenulata related to the C. integrifolia clade). The plant producing the Cissus psilata seeds may have been somewhat succulent and hence able to occupy arid habitats as well as riverine forest or savanna, based on the habitats of a number of related extant species in the C. aralioides-C. albiporcata clade.

DISCUSSION

Homology of the ventral surface in Vitaceae seeds-The current convention for descriptive terminology of Vitaceae seeds (Chen and Manchster 2011) and fossil Cissus seeds (Manchester et al., 2012b) has been followed here (Appendix S6, see Supplemental Data with the online version of this article) to allow
for ease of comparison with their work. However, an alternative interpretation is possible, particularly for the strongly flattened seeds (e.g. Fig. 1A-L; Fig. 2A-D; Fig. 3; Fig. 6A-F), whereby the ventral surface incorporates both ventral and apical sensu Appendix S6 herein (see Supplemental Data with the online version of this article) and the ventral grooves are short occupying less than half of the dimension of that surface. This alternative seed orientation is followed in all the floras to which we refer in this paper (i.e. the modern seed illustratiions in Fig. 6 are all rotated 90 degrees clockwise). These two alternative homologies would best be investigated by a developmental study.

Cissus origins, phylogeny and Miocene diversity in Africa—Relationships among genera in the Vitaceae are mostly comparable between our study and the most recent previous studies of Cissus (Liu et al., 2013, 2016; Rodrigues et al., 2014), with limited support for the backbone of the trees (but see Wen et al., 2013 and Zhang et al., 2015). Cissus species are found in three distinct clades in all analyses, identified by Rodrigues et al. (2014) as the Cissus striata clade (Clade III of Liu et al., 2013), the C. trianae clade (Clade V of Liu et al., 2013) and the core Cissus clade, which contains most of the species. As in Liu et al. (2013), the earliestdiverging clades comprise mainly African species, although this is more evident in our study in which the first branches are exclusively African species. This topology provides support for an African origin for the genus, as Liu et al. (2013) also concluded.

The new African fossils are entirely consistent with an African origin for Cissus. The notable similarities in seed morphology between extant Cissus species and Hiwegi Formation fossils across multiple seed morphotypes suggest the presence of four clades or members of their stem lineages, indicating diversity of

Cissus, by the early Miocene in Africa. Based on the divergence times (Appendix S9, see Supplemental Data with the online version of this article), it appears that all four clades originated much earlier than the ca. 18 Ma age of the Miocene fossils: 41.5 Ma (HPD 31.5-51.0 Ma) for the split of the Cissus barbeyana clade from the rest of core Cissus; 36.0 Ma (HPD 27.6-44.7 Ma) for the divergence of the C. integrifolia clade; 24.6 Ma (HPD 18.1-32.1 Ma) for the divergence of the C. sciaphila clade; and 22.8 Ma (HPD ca. 16.6-30.0 Ma) for the divergence of the C. aralioides- C. albiporcata clade. The time-calibrated phylogeny (Appendix S9, see Supplemental Data with the online version of this article) therefore suggests that several ghost lineages of Cissus await discovery in the fossil record. The new African Miocene seeds, and those from the Oligocene of Peru (see Comparison with other fossil Cissus below), provide fossil evidence consistent with the suggested phylogenetic history of Cissus.

Comparison with other fossil Cissus-The fossil record of the grape family (Vitaceae) extends back to the latest Cretaceous or earliest Paleogene in central India (Manchester et al., 2013) and to the Paleogene in North America and Europe (e.g., Manchester, 1994; Fairon-Demaret and Smith, 2002; Chen and Manchester, 2007; Collinson et al., 2012). However, for Cissus, the oldest, and only other, currently recognised examples are from the late early Oligocene Belén flora of northern Peru (Manchester et al., 2012b). This flora contains two Cissus species: Cissus willardii Berry and Cissus lombardii Manchester, Chen, \& Lott. Cissus willardii is small and globose with smooth lateral faces and large ventral infolds (fig. 2A-Q in Manchester et al., 2012b), unlike any of the fossils described above from Rusinga Island.

Conversely, Cissus lombardii shares some characteristics with African Miocene C. crenulata and modern C. integrifolia (seed Morphotype 1), being bilaterally symmetrical, laterally flattened, elliptical in lateral view with a pronounced median perichalazal rib and a faintly faceted marginal area defined by a marginal ridge on each lateral face (fig. 3A-N in Manchester et al., 2012b). This suggests that Cissus lombardii might be related to the C. integrifolia clade, extending its fossil record to the early Oligocene ($30-28.5 \mathrm{Ma}$). However, Cissus lombardii is smaller in all dimensions than C. crenulata and C. integrifolia, and lacks the distinct ornamenting ridges that cross the lateral faces in seeds of these species. The specimens of Cissus lombardii from the Belén flora are internal casts, which could result in a more subdued surface ornamentation than if the fossils were seeds themselves. However, as has been shown in extant Cissus seeds in this study using SRXTM (SRXTM videos of modern Cissus seeds (available from the Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36), the inner surface of the endotesta closely parallels the outer surface, which would result in a similar pattern of ornamentation whether a fossil is an internal cast or a replacement of the endotesta itself. There is no indication of even faint ridges across the lateral faces in Cissus lombardii (fig. 3A-B in Manchester et al., 2012b), suggesting that the ornamentation of the original seed was significantly different from Morphotype 1. The portion of the ventral surface containing the ventral infolds is "more or less planar (not markedly concave)" in Cissus lombardii (Manchester et al., 2012b, pg. 936), rather than weakly to strongly concave as in C. integrifolia and C. crenulata. Therefore, Cissus lombardii, is clearly distinct from the African Miocene species.

Biogeographic implications-The position of previously unsampled modern African species near the base of the phylogeny (Fig. 5) reinforces the African origin
for the core Cissus clade, suggested by Liu et al. (2013). The new African Miocene fossil Cissus crenulata has seed Morphotype 1 as do both extant species of the C. integrifolia clade, confirming the presence of early-divergent members of the core Cissus clade in Africa by at least the Miocene.

The two modern species outside Africa in the Cissus sciaphila clade (C. rostrata and C. adnata) are advanced within this clade. Six of the seven modern African species in this clade are characterized by seeds of Morphotype 3, and the seventh also includes specimens with this seed morphotype. The new African Miocene fossil Cissus rusingensis also has seeds of Morphotype 3. These data suggest that this clade originated in Africa. Dispersal during or after the Neogene to Australasia resulted in the modern pantropical intercontinental disjunct distribution. The calibrated phylogeny presented here (Appendix S9, see Supplemental Data with the online version of this article) suggests that the divergence of Australasian species occurred near the end of the Pliocene at 2.7 Ma (HPD 0.8-5.5 Ma) differing from, although within the error of, the late Miocene estimate of 7.8 Ma (HPD 3.0-15.1 Ma) made by Liu et al. (2013).

Liu et al. (2013) argued that transoceanic long distance dispersal, rather than terrestrial mammalian dispersal, was the most likely explanation for pantropical intercontinental disjunctions in Cissus, because Cissus fruits are fleshy and, although in some instances dispersed by mammals, are predominantly bird-dispersed, enabling long-distance transport by bird migration. Multiple large islands across the Indian Ocean may have facilitated an out-of-Africa migration by acting as migratory "stepping stones", as invoked for dispersal of other vitaceous genera (e.g., Cayratia; Lu et al., 2013).

The distributions of modern species in all four clades containing nearest living reatives to the fossils extend across Africa from East to West (Table 2). The fossil seeds suggest that the clades containing these living relatives may have had their origins in East Africa with subsequent spread to the rest of the continent. However, additional African fossil records of Cissus are needed to document dispersal patterns.

Paleoenvironmental implications-Previous paleoenvironmental reconstructions from the Hiwegi Formation have inferred a habitat mosaic inhabited by early hominoids, such as Ekembo (see McNulty et al., 2015). Evidence for mosaic habitats comes from gastropod (Verdcourt, 1963; Pickford, 1995) and mammal faunas (e.g., Andrews and Van Couvering, 1975), paleosols (Retallack et al., 1995) and paleobotany (Collinson et al., 2009; Maxbauer et al., 2013; Michel et al., 2014). Collinson et al. (2009) concluded that the overall paleoenvironmental signal, considering the evidence from plants, mammals, gastropods and paleosols, was one of "mixed habitats dominated by woodlands, with waterside environments and small patches of forest big enough to support forest faunas" (p. 161); this is very similar to the possible fossil Cissus paleoecologies based on nearest living relatives (see Fossil plant paleobiology and paleoecology).

The vegetation in which Cissus andrewsii, C. crenulata and C. psilata lived cannot be inferred from associated fossils, as the specimens were surface-picked. However, the context of the Cissus rusingensis fossils is well understood as they derive from in situ excavations of plant litter assemblages at the R 117 site (Collinson et al., 2009). These litter assemblages were interpreted to have accumulated under a continuous canopy in deciduous, broad-leaved woodland bordering a river, based on the fossil fruits and seeds and their taphonomy (Collinson et al., 2009). Cissus
rusingensis is therefore known to have inhabited a closed riverine woodland, consistent with interpretations made for this species from inferred near living relatives.

Recent studies have revealed temporal paleoenvironmental changes through the Hiwegi Formation (Michel et al., 2013, 2014; Garrett et al., 2015) and have suggested that interpretations of mosaic paleoenvironments may be based on timeaveraged faunal and floral assemblages that conflate separate, more homogeneous habitats. These studies suggest that more open, drier woodland habitats low in the Hiwegi Formation (e.g., Grit Member) gave way to dense, closed canopy forest further up (e.g., Fossil Bed and Kibanga Members), with early hominoid fossils recovered from both paleoenvironments (Garrett et al., 2015). Since the stratigraphic context of Cissus andrewsii, C. crenulata and C. psilata are unknown and they are not associated with C. rusingensis, the four new species of Cissus described may or may not have existed contemporaneously. Despite this uncertainty, it is known from in situ excavations in the Fruit and Nut Bed (Collinson et al., 2009) and stratigraphically associated leaf assemblages (Maxbauer et al., 2013) that a riverine mosaic habitat of woodland and forest existed during the deposition of the Grit Member of the lower Hiwegi Formation. The paleoecology of the new fossil species of Cissus, inferred from living relatives and supported (for Cissus rusingensis) by associated fossils, provides new evidence for mosaic landscapes on Rusinga Island during the early Miocene, ranging from gallery or riverine forest to woodland, bushland and savanna.

Andrews, A.L., D.J. Peppe, K.P. McNulty, W.E.H. Harcourt-Smith, H.M. Dunsworth, A.L. Deino, and D.L. Fox. 2009. Magnetostratigraphy of the Early Miocene Kulu and Hiwegi Formations on Rusinga Island (Lake Victoria, Kenya). Geological Society of America Abstracts with Programs 41: 672.

Andrews, P. 1992. Community evolution in forest habitats. Journal of Human Evolution 22: 423-438. doi:10.1016/0047-2484(92)90069-L.

Andrews, P., and J.H. Van Couvering. 1975. Palaeoenvironments in the East African Miocene. In F. Szalay [ed.], Contribution to Primate Paleobiology, vol. 5, 62-103. Karger, Basel, Switzerland.

Andrews, P., and E. Simons. 1977. A new African Miocene gibbon-like genus, Dendropithecus (Hominoidea, Primates) with distinctive postcranial adaptations: Its significance to origin of Hylobatidae. Folia Primatologica 28: 161-169. doi:10.1159/000155807.

Beentje, H. 1994. Kenya Trees, Shrubs and Lianas. National Museums Kenya, Nairobi, Kenya.

Bestland, E.A., G.D. Thackray, and G.J. Retallack. 1995. Cycles of doming and eruption of the Miocene Kisingiri volcano, southwest Kenya. Journal of Geology 103: 598-607.

Butler, P.M. 1984. Macroscelidea, Insectivora and Chiroptera from the Miocene of East Africa. Palaeovertebrata 14: 117-200.

Chen, I., and S.R. Manchester. 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany 94: 1534-1553. doi:10.3732/ajb.94.9.1534.

Chen, I., and S.R. Manchester. 2011. Seed morphology of Vitaceae. International Journal of Plant Sciences 172: 1-35. doi:10.1086/657283.

Chen, Z., H. Ren, and J. Wen. 2007. Vitaceae. In C.Y. Wu, D.-Y. Hong, P.H. Raven [eds.], Flora of China, vol. 12, 173-222. Science Press, Beijing, China and Missouri Botanical Garden Press, St. Louis, Missouri, USA.

Chesters, K.I.M. 1957. The Miocene flora of Rusinga Island, Lake Victoria, Kenya. Palaeontographica Abteilung B 101: 29-71.

Chesters, K.I.M. 1958. Fossil angiosperms as indicators of early Tertiary conditions in Africa with special reference to the Miocene flora of Rusinga Island, Lake Victoria. Unpublished PhD thesis. University of Cambridge.

Clos, L.M. 1995. A new species of Varanus (Reptilia: Sauria) from the Miocene of Kenya. Journal of Vertebrate Paleontology 15: 254-267. doi:10.1080/02724634.1995.10011228.

Collinson, M.E., P. Andrews, and M.K. Bamford. 2009. Taphonomy of the early Miocene flora, Hiwegi Formation, Rusinga Island, Kenya. Journal of Human Evolution 57: 149-162. doi:10.1016/j.jhevol.2009.02.010.

Collinson, M.E., S.R. Manchester, and V. Wilde. 2012. Fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg Gesellschaft für Naturforschung 570: 1-251.

Collinson, M.E., M.K. Bamford, and S.Y. Smith. 2013. The Early Miocene fruit and seed floras from Rusinga and Mfwangano Islands, Kenya. Geological Society of America Abstracts with Programs 45: 457.

Conrad, J.L., K. Jenkins, T. Lehmann, F.K. Manthi, D.J. Peppe, S. Nightingale, A. Cossette, H.M., et al. 2013. New specimens of 'Crocodylus' pigotti (Crocodylidae) from Rusinga Island, Kenya, and generic reallocation of the species. Journal of Vertebrate Paleontology 33: 629-646. doi:10.1080/02724634.2013.743404.

De Santo, A.V., A. Fioretto, G. Bartoli, and A. Alfani. 1987. Gas exchange of two CAM species of the genus Cissus (Vitaceae) differing in morphological features. Photosynthesis Research 13: 113-124. doi:10.1007/BF00035235.

Descoings, B. 1967. Vitacées. In H. Humbert [ed.], Flore de Madagascar et des Comores, vol. 124, 1-151. Muséum National d'Histoire Naturelle, Paris, France.

Descoings, B. 1972. Vitacées, Leeacées. In A. Aubréville and J.-F. Leroy [eds.], Flore du Cameroun, vol. 13, 1-132. Muséum National d'Histoire Naturelle, Paris, France.

Dewit, J., and L. Willems. 1960. Vitaceae. In W. Robyns, P. Staner, F. Demaret, R. Germain, G. Gilbert, L. Hauman, M. Homès, et al. [eds.], Flore du Congo belge et du Ruanda-Urundi. Spermatophytes, vol. 9, 453-567. Institut National pour l'Étude Agronomique du Congo belge, Brussels, Belgium.

Doyle J.J., and J.L. Doyle. 1987. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Drake, R.E., J.A. Van Couvering, M.H. Pickford, G.H. Curtis, and J.A. Harris. 1988. New chronology for the Early Miocene mammalian faunas of Kisingiri, Western Kenya. Journal of the Geological Society 145: 479-491. doi:10.1144/gsjgs.145.3.0479.

Drummond A.J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. doi:10.1186/1471-2148-7-214.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. doi:10.1093/nar/gkh340.

Fairon-Demaret, M., and T. Smith. 2002. Fruits and seeds from the Tienen Formation at Dormaal, Palaeocene-Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology 122: 47-62. doi:10.1016/S0034-6667(02)00103-3.

Garrett, N.D., D.L. Fox, K.P. McNulty, L. Michel, and D.J. Peppe. 2015. Early Miocene paleoenvironments of Rusinga Island, Kenya: New data from fossil mammalian tooth enamel stable isotope compositions. Journal of Vertebrate Paleontology, Program and Abstracts 2015: 130.

GBIF (Global Biodiversity Information Facility). 2013. GBIF Data Portal. Website http://www.gbif.org [accessed 02 October 2015].

Harris, J., and J. Van Couvering. 1995. Mock aridity and the paleoecology of volcanically influenced ecosystems. Geology 23: 593-596. doi:10.1130/00917613(1995)023<0593:MAATPO>2.3.CO;2.

Harrison, C.J.O. 1980. Fossil birds from Afrotropical Africa in the collection of the British Museum (Natural History). Ostrich 51: 92-98.
doi:10.1080/00306525.1980.9633549.

Harrison, T. 2002. Late Oligocene to middle Miocene catarrhines from Afro-Arabia. In W. Hartwig [ed.], The Primate Fossil Record. 311-338. Cambridge University Press, Cambridge, UK.

Harrison, T., and P. Andrews. 2009. The anatomy and systematic position of the early Miocene proconsulid from Meswa Bridge, Kenya. Journal of Human Evolution 56: 479-496. doi:10.1016/j.jhevol.2009.02.005.

Hartman, J.H., and A.J. Kihm. 1995. Age of Meek and Hayden's Fort Union Group (Paleocene), Upper Missouri River, North Dakota-Montana. In L.D. Hunter, and R.A. Schalla [eds.], Proceedings of the $7^{\text {th }}$ International Williston Basin Symposium, 417428. Montana Geological Society, Billings, Montana, USA.

Jackes, B.R. 1988. Revision of the Australian Vitaceae, 3. Cissus L.. Austrobaileya 2: 481-505.

Janis, C.M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24: 467500.

Keay, R.W.J. 1958. Ampelidaceae. In R.W.J. Keay [ed.], Flora of West Tropical Africa, vol. 1, part 2, 671-683. Crown Agents for Oversea Governments and Administrations, London, UK.

Kihm, A.J., and J.H. Hartman. 1991. The age of the Sentinel Butte Formation, North Dakota. Journal of Vertebrate Paleontology 11: 40A.
doi:10.1080/02724634.1991.10011425.

Le Gros Clark, W.E., and L.S.B. Leakey. 1951. The Miocene Hominoidea of East Africa. Fossil Mammals of Africa, British Museum (Natural History) 1: 1-117.

Leakey, L.S.B. 1952. Lower Miocene invertebrates from Kenya. Nature 169: 624625. doi:10.1038/169624b0.

Liu, X.-Q., S.M. Ickert-Bond, L.-Q. Chen, and J. Wen. 2013. Molecular phylogeny of Cissus L. of Vitaceae (the grape family) and evolution of its pantropical intercontinental disjunctions. Molecular Phylogenetics and Evolution 66: 43-53. doi:10.1016/j.ympev.2012.09.003.

Liu, X.-Q., S.M. Ickert-Bond, Z.-L. Nie, Z. Zhou, L.-Q. Chen, and J. Wen. 2016. Phylogeny of the Ampelocissus-Vitis clade in Vitaceae supports the New World origin of the grape genus. Molecular Phylogenetics and Evolution 95: 217-228. doi:10.1016/j.ympev.2015.10.013.

Lombardi, J.A. 2000. Vitaceae: Gêneros Ampelocissus, Ampelopsis e Cissus. Flora Neotropica Monographs 80: 1-250.

Lu, F.-Y. 1993. Vitaceae. In T.C. Huang, C.F. Huang, Z.Y. Li, H.C. Lo, H. Ohashi, C.F. Shen and C.J. Wang [eds.], Flora of Taiwan, vol. 3, 696-710. Committee of the Flora of Taiwan, Taipei, Taiwan.

Lu, L., W. Wang, Z. Chen, and J. Wen. 2013. Phylogeny of the non-monophyletic Cayratia Juss. (Vitaceae) and implications for character evolution and biogeography.

Molecular Phylogenetics and Evolution 68: 502-515.
doi:10.1016/j.ympev.2013.04.023.

Manchester, S.R. 1994. Fruits and seeds of the middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1-205.

Manchester, S.R., F. Herrera, E. Fourtanier, J. Barron, and J.-N. Martinez. 2012a. Oligocene age of the classic Belén fruit and seed assemblage of north coastal Peru based on diatom biostratigraphy. Journal of Geology, 120: 467-476. doi:10.1086/665797.

Manchester, S.R., I. Chen, and T.A. Lott. 2012b. Seeds of Ampelocissus, Cissus, and Leea (Vitaceae) from the Paleogene of western Peru and their biogeographic significance. International Journal of Plant Sciences 173: 933-943. doi:10.1086/667233.

Manchester, S.R., D.K. Kapgate, and J. Wen. 2013. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. American Journal of Botany 100: 1849-1859. doi:10.3732/ajb. 1300008.

Marone, F., and M. Stampanoni. 2012. Regridding reconstruction algorithm for realtime tomographic imaging. Journal of Synchrotron Radiation 19: 1029-1037. doi:10.1107/S0909049512032864.

Marone, F., B. Münch, and M. Stampanoni. 2010. Fast reconstruction algorithm dealing with tomography artifacts. Proceedings of SPIE 7804: 780410. doi:10.1117/12.859703.

Maxbauer, D.P., D.J. Peppe, M. Bamford, K.P. McNulty, W.E.H. Harcourt-Smith, and L.E. Davis. 2013. A morphotype catalog and paleoenvironmental interpretations of early Miocene fossil leaves from the Hiwegi Formation, Rusinga Island, Lake Victoria, Kenya. Palaeontologia Electronica 16: 28A.

McNulty, K.P., W.E.H. Harcourt-Smith, and H.M. Dunsworth, 2007. New primate fossils from Rusinga Island, Kenya. American Journal of Physical Anthropology 132 (Supplement): 170. doi:10.1002/ajpa.20577.

McNulty, K.P., D.R. Begun, J. Kelley, F.K. Manthi, and E.N. Mbua. 2015. A systematic revision of Proconsul with the description of a new genus of early Miocene hominoid. Journal of Human Evolution 84: 42-61. doi:10.1016/j.jhevol.2015.03.009.

Michel, L.A., D.J. Peppe, S.G. Driese, K.P. McNulty, D.L. Fox, and N. Garrett. 2013. Equatorial paleoenvironment leading into the Miocene Climatic Optimum: Lessons learned from Rusinga and Mfangano Islands, Lake Victoria Kenya. Geological Society of America Abstracts with Programs 45: 457.

Michel, L.A., D.J. Peppe, J.A. Lutz, S.G. Driese, H.M. Dunsworth, W.E.H. HarcourtSmith, W.H. Horner, et al. 2014. Remnants of an ancient forest provide ecological
context for Early Miocene fossil apes. Nature Communications 5: 3236. doi:10.1038/ncomms4236.

Muller, J. 1981. Fossil pollen records of extant angiosperms. Botanical Review 47: 1142. doi:10.1007/BF02860537.

Nichols, D.J., and H.L. Ott. 1978. Biostratigraphy and evolution of the MomipitesCaryapollenites lineage in the Early Tertiary in the Wind River Basin, Wyoming. Palynology 2: 93-112. doi:10.1080/01916122.1978.9989167.

Nie, Z.L., H. Sun, S.R. Manchester, Y. Meng, Q. Luke, J. Wen. 2012. Evolution of the intercontinental disjunctions in six continents in the Ampelopsis clade of the grape family (Vitaceae). BMC Evolutionary Biology 12: 17. doi:10.1186/1471-2148-12-17.

Peppe, D.J., A.L. Deino, K.P. McNulty, T. Lehmann, W.E.H. Harcourt-Smith, H.M. Dunsworth, and D.L. Fox. 2011. New age constraints on the early Miocene faunas from Rusinga and Mfangano Islands (Lake Victoria, Kenya). American Journal of Physical Anthropology 144 (Supplement): 237. doi:10.1002/ajpa.21502.

Pickford, M. 1981. Preliminary Miocene mammalian biostratigraphy for western Kenya. Journal of Human Evolution 10: 73-97. doi:10.1016/S0047-2484(81)80026-7.

Pickford, M. 1995. Fossil land snails of East Africa and their palaeoecological significance. Journal of African Earth Sciences 20: 167-226. doi:10.1016/0899-5362(95)94397-R.

Pickford, M. 2002. Palaeoenvironments and hominoid evolution. Zeitschrift für Morphologie und Anthropologie 83: 337-348.

Pickford, M., B. Senut, D. Gommery, and E. Musiime. 2009. Distinctiveness of Ugandapithecus from Proconsul. Estudios Geológicos 65: 183-241. doi:10.3989/egeol.39926.071.

Rambaut A., M.A. Suchard, D. Xie, and A.J. Drummond. 2014. Tracer v1.6. Website http://beast.bio.ed.ac.uk/Tracer [accessed 15 October 2015].

Reed, K.E. 1997. Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution 32: 289-322. doi:10.1006/jhev.1996.0106.

Retallack, G.J., E.A. Bestland, and D.P. Dugas. 1995. Miocene paleosols and habitats of Proconsul on Rusinga Island, Kenya. Journal of Human Evolution 29: 5391. doi:10.1006/jhev.1995.1047.

Rich, P.V., and C.A. Walker. 1983. A new genus of Miocene flamingo from East Africa. Ostrich 54: 95-104. doi:10.1080/00306525.1983.9634452.

Robinson, J.T. 1963. Adaptive radiation in the australopithecines and the origin of man. In F.C. Howell, and F. Bourliere [eds.], African Ecology and Human Evolution, 385-416. Aldine, Chicago, Illinois, USA.

Rodrigues, J.G., J.A. Lombardi, and M.B. Lovato. 2014. Phylogeny of Cissus (Vitaceae) focusing on South American species. Taxon 63: 287-298. doi:10.12705/632.33.

Salard-Cheboldaeff, M. 1978. Sur la palynoflore Maestrichtienne et Tertiaire du basin sédimentaire littoral du Cameroun. Pollen et Spores 20: 215-260.

Salard-Cheboldaeff, M. 1981. Palynologie Maestrichtienne et Tertiaire du Cameroun. Resultats botaniques. Review of Palaeobotany and Palynology 32: 401-439. doi:10.1016/0034-6667(81)90021-X.

Samarakoon, T., S.Y. Wang, M.H. Alford. 2013. Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Applications in Plant Sciences 1: 1200236. doi:10.3732/apps. 1200236.

Shaw, J., E.B. Lickey, J.T. Beck, S.B. Farmer, W. Liu, J. Miller, K.C. Siripun, et al. 2005. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166. doi:10.3732/ajb.92.1.142.

Smith, S.Y., M.E. Collinson, P.J. Rudall, D.A. Simpson, F. Marone, and M. Stampanoni. 2009. Virtual taphonomy using SRXTM reveals cryptic features and internal structure of modern and fossil plants. Proceedings of the National Academy of Sciences, USA 106: 12013-12018. doi:10.1073/pnas. 0901468106.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30: 1312-1313.
doi:10.1093/bioinformatics/btu033.

Stampanoni, M., A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein et al. 2006. Trends in synchrotron-based tomographic imaging: the SLS experience. Proceedings of SPIE 6318: 63180M. doi:10.1117/12.679497.

Taberlet P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109. doi:10.1007/BF00037152.

Thackray, G.D. 1994. Fossil nest of sweat bees (Halictinae) from a Miocene paleosol, Rusinga Island, western Kenya. Journal of Paleontology 68: 795-800. doi:10.1017/S0022336000026238.

Verdcourt, B. 1963. The Miocene non-marine mollusca of Rusinga Island, Lake Victoria, and other localities in Kenya. Palaeontographica Abteilung A 121: 1-37.

Verdcourt, B. 1993. Vitaceae. In R.M. Polhill [ed.], Flora of Tropical East Africa, vol. 195, 1-149. A.A. Balkema, Rotterdam, Netherlands.

Walker, A., and M.F. Teaford. 1988. The Kaswanga primate site: An Early Miocene hominoid site on Rusinga Island, Kenya. Journal of Human Evolution 17: 539-544.

Walker, A., M.F. Teaford, L. Martin, and P. Andrews. 1993. A new species of Proconsul form the early Miocene of Rusinga/Mfangano Islands, Kenya. Journal of Human Evolution 25: 43-56. doi:10.1006/jhev.1993.1037.

Wen, J., Z. Xiong, Z.-L. Nie, L. Mao, Y. Zhu, X.-Z. Kan, S.M. Ickert-Bond, J. Gerrath, E.A. Zimmer, and X.-D. Fang. 2013. Transcriptome sequences resolve deep relationships of the grape family. PLoS ONE 8: e74394. doi:10.1371/journal.pone. 0074394 .

Werdelin, L. 2011. A new genus and species of Felidae (Mammalia) from Rusinga Island, Kenya, with notes on early Felidae of Africa. Estudios Geológicos 67: 217222. doi:10.3989/egeol.40480.185.

Whitworth, T. 1958. Miocene ruminants of East Africa. Fossil Mammals of Africa, British Museum (Natural History) 15: 1-50.

Wild, H., and R.B. Drummond. 1966. Vitaceae. In A.W. Exell, A. Fernandes, and H. Wild [eds.], Flora Zambesiaca, vol. 2, part 2, 439-492. Crown Agents for Oversea Governments and Administrations, London, UK.

Yeo, C.K., W.F. Ang, A.F.S.L. Lok, and K.H. Ong. 2012. Conservation status of Cissus L. (Vitaceae) of Singapore: with a special note on Cissus repens Lam. Nature in Singapore 5: 319-330.

Zetter, R., M.J. Farabee, K.B. Pigg, S.R. Manchester, M.L. DeVore, and M.D. Nowak. 2011. Palynoflora of the Late Paleocene silicified shale at Almont, North Dakota, USA. Palynology 35: 179-211. doi:10.1080/01916122.2010.501164.

Zhang, N., J. Wen, and E.A. Zimmer. 2015. Congruent deep relationships in the grapt family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS ONE 10:e0144701. doi:10.1371/journal.pone. 0144701 .

Table 1. Seed morphotypes of selected single-seeded, modern African Cissus species based on internal and external morphology obtained from SRXTM datasets and descriptions and illustrations in floras (Dewit and Willems, 1960; Descoings, 1972; Verdcourt, 1993). $\mathrm{H}=$ height, $\mathrm{W}=$ width.

Seed morphotype	Species	Description
$\begin{gathered} 1 \\ (\text { Figs. 6D, 6E, } \\ 7 A) \end{gathered}$	C. integrifolia; C. populnea	- Two-layered, thick fruit wall, with a denser outer layer and more porous inner layer - Seeds laterally flattened (H:W ratio of 1.5-1.8 in median DTS), elongate in the dorsiventral dimension - Obvious break in seed coat near the chalaza - Outer endotesta consists of thin layer with different X-ray attenuation (possibly high mineral content) - Dense and thin seed coat - Seed surface with two marginal ridges, one on each lateral face, a ridged and faceted marginal area, long ridges radiating from ventral margin across lateral faces
$\begin{gathered} 2 \\ \text { (Figs. 6B, 7B) } \end{gathered}$	C. barbeyana; C. dasyantha	- Thin to moderately thick fruit wall - Seeds slightly laterally flattened (H:W ratio of 1.3-1.5 in median DTS), elongate in the dorsiventral dimension - Indistinct break in seed coat near the chalaza - Endotesta has uniform X-ray attenuation - Dense and moderately thick seed coat - Seed surface with two marginal ridges; a ridged and faceted marginal area, where ridges sometimes fuse to form a reticulum; short ridges radiating across part of the lateral faces
$\begin{gathered} 3 \\ \text { (Figs. 6H, 7C) } \end{gathered}$	C. lebrunii; C. sciaphila; C. tiliifolia	- Thin fruit wall - Seeds not, or slightly, laterally flattened (H:W ratio of $1.0-$ 1.6 in median DTS), short in the dorsiventral dimension - Indistinct break in seed coat near the chalaza - Endotesta has uniform X-ray attenuation - Thin seed coat of variable texture - Seed surface covered in ridges, forming a complete to incomplete reticulum across the lateral faces
$\begin{gathered} 4 \\ \text { (Figs. 6M, 7D) } \end{gathered}$	C. petiolata	- Thick fruit wall - Seeds laterally flattened (H:W ratio of 1.5-1.8 in median DTS), short in the dorsiventral dimension - Thickened chalaza with no break in seed coat - Endotesta has uniform X-ray attenuation - Dense and thick seed coat - Seed surface smooth.

Drummond (1966); (9) Descoings (1972); (10) Descoings (1967); (11) Beentje (1994); (12) Yeo et al. (2012).

Species	Distribution	Habit	Habitat	Sources
C. adnata Roxb.	Australasia; E, SE, and S Asia	Scrambling or climbing shrub, or woody liana, up to 10 metres	Primary lowland monsoon forests, riparian forest, disturbed and semi-open scrub and deciduous forest, shrubland and thickets	1, 2, 3, 4
C. albiporcata Masinde \& L.E.Newton	E Africa	Climber	Bushland in rocky areas	3, 5
C. aphyllantha Gilg	E Africa	Shrub, scrambler or woody climber, 1 to 4 meters tall	Acacia scrub or desert thornbush, scrubby woodland, rocky outcrops	3, 5
C. aralioides (Welw. ex Baker) Planch.	C, E and W Africa	Vigorous, succulent liana or herbaceous climber, a strong, lofty climber, up to 25 meters	Coastal and riverine evergreen forest, rainforest, coastal bushland, Acacia bushland, grassland, thickets	$\begin{aligned} & 3,5,6,7, \\ & 89 \end{aligned}$
C. barbeyana De Wild. \& T.Durand	C and W Africa	Herbaceous to woody, low, small liana	Rainforest, forest clearings, forest fragments and clusters	3, 6, 7, 9
C. cactiformis Gilg	E and S Africa	Succulent climber or scrambler, 1.2 to 4.5 meters long	Woodland, mixed bushland, usually in stony places, rock domes	3, 5
C. dasyantha Gilg \& M.Brandt	W Africa	Liana, up to 6 meters	Occasionally flooded forest, gallery forests	3, 7
C. faucicola Wild \& R.B.Drumm.	E Africa	Herbaceous climber, several meters long	Evergreen rainforest, especially edges by waterfalls and in grassy clearings	5, 8
C. floribunda (Baker) Planch.	E Africa	Thin woody liana or climber, several meters long	Rainforest, dense moist tropical forest, disturbed forest or forest edge	4, 10
C. integrifolia (Baker) Planch.	C and E Africa	Herbaceous vigorous climber to 5 meters, reaching tops of trees or thicket-forming	Evergreen riverine forest, woodland, bushland and savanna grassland, often on rocky scarps	$\begin{aligned} & 3,5,7,8, \\ & 11 \end{aligned}$
C. lebrunii Dewit	C Africa	Herbaceous climber	Rainforest	3, 7
C. oliveri (Engl.) Gilg ex Engl.	C and E Africa	Herbaceous to woody climbing shrub, up to 6 meters long	Riverine and gallery forest, marshy areas, papyrus swamps, wet grassland with scattered trees	3, 5, 7
C. oreophila Gilg \& M.Brandt	C and W Africa	Large herbaceous liana	Gallery and riverine forest, forest edges, swamp areas	3, 4, 6, 9
C. petiolata Hook.f.	C, E and W Africa	Large, somewhat succulent liana,	Riverine forest, occasionally flooded forest edges,	3, 5, 6, 7,

		vigorous climber or scrambler, to at least 10 meters	thickets, Acacia mixed bushland, rocky ground with scattered trees and shrubs, woody/shrub savanna	8, 9, 11
C. phymatocarpa Masinde \& L.E.Newton	E Africa	Climber	Thickets on forest edges and coastal bushland	3,5
C. polita Desc.	E Africa	Herbaceous liana, 1.5 to 3 meters	Calcareous hills and plateaux; dry, deciduous seasonal forest; savanna grassland with dry forest	4, 10
C. polyantha Gilg \& M.Brandt	C, E and W Africa	Herbaceous to woody climber/ liana, up to 15 meters	Riverine and gallery rainforest, rocky hollows in grassland and thickets	$\begin{aligned} & 3,5,6,7, \\ & 9 \end{aligned}$
C. populnea Guill. \& Perr.	C, E and W Africa	Bushy liana, to 4.5 meters	Wooded savanna, rocky outcrops and scree, bushland, lowland forest edges	$\begin{aligned} & 3,5,6,7, \\ & 9 \end{aligned}$
C. pseudoguerkeana Verdc.	E Africa	Spreading herb, at least 60 cm long	Woodland, low shrubs on sand, swampy places	3,5
C. quadrangularis L.	Arabia; C, E, N, S, and W Africa; SE and S Asia	Succulent bushy liana 1 to 15 meters long, or succulent climbing shrub	Xerophilic thickets, thorny savanna, Acacia woodland, grassland, riverine thicket, coastal forest edges	$\begin{aligned} & 3,5,8,9, \\ & 10 \end{aligned}$
C. quarrei Dewit	C and E Africa	Erect herb or herbaceous climber, 0.6 to 1 meter tall	Riverine vegetation, Brachystegia woodland	3, 5, 7, 8
C. rhodotricha (Baker) Desc.	E Africa	Scrambling and climbing strong liana or erect shrub	Rocky outcrops, deciduous seasonal forest, wooded savanna	10
C. rondoensis Verdc.	E Africa	Herbaceous to semi-woody climber to around 4 meters	Moist, (semi-) evergreen forest, dense forest thicket	3, 4, 5
C. rostrata (Miq.) Korth. ex Planch.	SE Asia	Climber/ liana, up to 10 to 15 meters	Fringe and understorey forest; forest river banks, peat swamp/ marshy forest	3, 4, 12
C. rotundifolia Vahl	Arabia; C, E and S Africa	Succulent, herbaceous to woody, vigorous climber/ liana, up to 5 meters	Dry woodland and bush, thorny savanna, Acacia scrub, bushland, thickets, dry forest and forest edges particularly on rocky outcrops	3, 5, 7, 8
C. sagittifera Desc.	E Africa	Creeping or climbing, thin liana	Woodland edges, limestone cliffs, quartzite outcrops	3, 4, 10
C. sciaphila Gilg	E Africa	Woody climber/ liana, 3 to 12 meters long or shrubby	Lowland riverine forest fringes, woodland slopes above river valleys	3, 5, 8
C. smithiana (Baker) Planch.	C and W Africa	Large liana/ climber	Rainforest, forest galleries and edges	3, 7, 9
C. sylvicola Masinde \& L.E.Newton	E Africa	Herbaceous, somewhat succulent and fleshy liana, up to 12 meters	Evergreen forest, also forest on rocky hills, coralline limestone and thicket	3,5
C. tiliifolia Planch.	C and E Africa	Herbaceous to woody climber, up to 10 meters	Forest and thickets in swampy areas, particularly near lake shores, swampy grassland	3,5
C. welwitschii (Baker) Planch.	C and E Africa	Vigorous, woody climber, 2 to 9 meters long, or shrubby	Semi-evergreen bushland, riverine fringes, thickets and termite mounds in Brachystegia woodland, rocky outcrops	3, 5, 8

Appendix 1. Voucher information and GenBank accession numbers of Cissus species, for which new sequences were produced for the present phylogenetic analysis. Species; trnLF; rps16; trnC-petN; atpB-rbcL; voucher information; Kew DNA Bank accession number.

Cissus barbeyana De Wild. \& T.Durand; KX131178; -; -; -; Lisowski, S. 16406 (K); 31957. Cissus bosseri Desc.; KX131174; -; -; KX131172; Phillipson, P.B. \& Rabesihanaka, S. 3140 (K); 31965. Cissus petiolata Hook.f.; KX131175; -; -;- ; Luke, P.A. \& WRQ 9365 (K); 31952. Cissus polyantha Gilg \& M.Brandt; KX131176; -; -; -; Deighton, F.C. 5208 (K); 31955. Cissus populnea Guill. \& Perr.; KX131179; -; -; -; Daramola, B.O. 221 (K); 31968. Cissus rondoensis Verdc.; -; -; -; KX131170; Bidgood, S., Abdallah, R. \& Vollesen, K. 1553 (K); 31961. Cissus smithiana (Baker) Planch.; KX131177; -; -; -; Louis, J. 559 (K); 31959. Cissus tiliifolia Planch.; KX131173; -; -; KX131171; Eilu, G. 240 (K); 31964.

Appendix 2. Species included in the phylogenetic analysis of family Vitaceae for which sequences were obtained from GenBank, with a particular focus on genus Cissus. Species; trnLF; rps16; trnC-petN; atpB-rbcL.

Cissus adnata Roxb.; JX476858; JX476547; JX476673; JX476429. Cissus albiporcata Masinde \& L.E. Newton; JF437304; JX476548; JF437201; JX476430. Cissus amazonica Lindel; JX476859; JX476549; JX476674; JX476431. Cissus anisophylla Lombardi ; AB235010; JX476550; JX476675; JX476432. Cissus annamica Gagnep.; -; -; JX476676; -. Cissus antarctica Vent. ; JX476860;

JX476551; JX476677; JX476433. Cissus apendiculata Lombardi; JX313413; -; -; -. Cissus aphyllantha Gilg; JX476862; JX476553; JX476679; JX476435. Cissus araguainensis Lombardi; JX313415; -; -; -. Cissus aralioides (Welw. ex Baker) Planch.; JF437305; -; JF437202; -. Cissus assamica (M.A. Lawson) Craib; JF437307; JX476559; JF437204; JX476441. Cissus auricoma Desc.; JX476866; JX476560; JX476682; JX476442. Cissus bahiensis Lombardi; JX313416; -; -; -. Cissus biformifolia Standl.; -; JX476562; JX476684; JX476444. Cissus blanchetiana Planch.; JX313417; -; -; -. Cissus cactiformis Gilg.; JX476868; JX476563; JX476685; JX476445. Cissus campestris (Baker) Planch.; JX313418; -; -; -. Cissus cardiophylla Standley; EF179080; -; -; -. Cissus cornifolia (Baker) Planch.; JF437308; JX476567; JF437205; JX476449. Cissus decidua Lombardi; JX313419;-; -; -. Cissus descoingsii Lombardi; JX313420; -; -; -. Cissus diffusa (Miq.) Amshoff; JX476871; JX476569; JX476689; JX476451. Cissus diffusiflora (Baker) Planch.; JX476872; JX476570; -; JX476452. Cissus discolor Blume; JF437309; -; JF437206; -. Cissus duarteana Cambess.; JX313421; -; -; -. Cissus elongata Roxb.; -; JX476573; JX476691; JX476455. Cissus erosa Rich.; HM585942; HM585802; JX476693; HM585526. Cissus faucicola Wild \& R.B.Drumm.; JX476874; JX476576; JX476694; JX476458. Cissus floribunda (Baker) Planch.; JX476875; JX476577; JX476695; JX476459. Cissus gongylodes (Burch. ex Baker) Planch.; JX476877; JX476579; JX476697; JX476461. Cissus granulosa Ruiz \& Pav.; JX476880; JX476582; JX476700; JX476464. Cissus hastata Miq.; AB235012; -; JX476701; JX476465. Cissus hypoglauca Durras; JX476881; JX476583; JX476702; JX476466. Cissus incisa (Nutt.) Des Moul. Ex S.Watson; HM585944; HM585804; -; HM585528. Cissus integrifolia (Baker) Planch.; JX476882; JX476584; JX476703; JX476467. Cissus javana DC. ;

JX476883; JX476585; JX476704; JX476468. Cissus lanea Desc.; JX476884; JX476586; JX476705; JX476469. Cissus leucophleus (Scott-Elliot) Suess.; JX476885; JX476587; JX476706; JX476470. Cissus madecassa Desc.; JX476886; JX476588; JX476707; JX476471. Cissus microcarpa Vahl.; JX476888; JX476590; JX476709; JX476473. Cissus microdonta Vahl.; JX476889; JX476591; JX476710; JX476474. Cissus neei Croat; JX313424; -; -; -. Cissus nodosa Blume; HM585945; JX476592; JX476711; JX476475. Cissus obliqua Ruiz \& Pav.; JX476890; JX476593; JX476712; JX476476. Cissus oblonga (Benth.) Planch.; EF179083; -; -; -. Cissus oliveri Gilg. ex Engl.; JX476892; JX476595; JX476714; JX476478. Cissus paraensis Lombardi; JX313427; -; -; -. Cissus paullinifolia Vell.; JX313426; -; -; -. Cissus penninervis (F.Muell.) Planch.; AF300300; -; -; -. Cissus pentaclada Jackes; EF179084; -; -; -. Cissus phymatocarpa Masinde \& L.E. Newton; JF437311; JX476596; JF437209; JX476479. Cissus pileata Desc.; JX476893; JX476597; JX476715; JX476480. Cissus polita Desc.; JX476894; JX476598; JX476716; JX476481. Cissus producta Afzel.; JF437312; JX476600; JX476718; JX476483. Cissus pseudoguerkeana Verdc.; JX476896; JX476601; JX476719; JX476484. Cissus pseudoverticillata Verdc.; JX476897; JX476602; JX476720; JX476485. Cissus pulcherrima Vell.; JX313429; -; -; -. Cissus quadrangularis L.; JF437313; JX476603; JF437211; JX476486. Cissus quarrei Dewit; JX476899; JX476605; JX476722; JX476488. Cissus reniformis Domin.; EF179086; -; -; -. Cissus repanda Vahl; JX476900; JX476607; JX476724; JX476490. Cissus repens Lam.; HM585946; -; -; HM585530. Cissus rhodotricha (Baker) Desc.; JX476902; JX476609; JX476727; JX476492. Cissus rhombifolia Vahl; JX476905; JX476612; JX476729; JX476495. Cissus rostrata Korth.ex Planch.; AB235016; -; JX476731; JX476497. Cissus rotundifolia (Forssk.) Vahl;

JF437315; JX476614; JF437213; JX476498. Cissus rubiginosa Welw. ex Bak. Planch. ; JX476907; JX476616; JX476732; JX476500. Cissus sagittifera Desc.; JX476908; JX476617; JX476733; JX476501. Cissus sciaphila Gilg; JF437316; JX476619; JF437214; JX476503. Cissus serroniana (Glaz.) Lombardi; JX313430; ; -; -. Cissus simsiana Roem. \& Schult.; JX476910; JX476620; JX476734; JX476504. Cissus spinosa Cambess.; JX313435; -; -; -. Cissus sterculiifolia (F.Muell. Ex Benth.) Planch.; EF179088; -; -; -. Cissus stipulata Vell.; JX313436; -; -; -. Cissus striata Ruiz \& Pav.; AB235017; -; JX476747; -. Cissus subtetragona Planch.; JX476923; JX476635; JF437216; JX476519. Cissus sulcicaulis (Baker) Planch.; JX313438; -; -; -. Cissus surinamensis Desc.; JX313439; -; -; -. Cissus sylvicola Masinde \& L.E.Newton; JX476924; JX476636; JX476751; JX476520. Cissus tiliacea Kunth; JX313440; -; -; -. Cissus tinctoria Mart.; JX313414; -; -; -. Cissus trianae Planch.; JX313441; -; -; -. Cissus trifoliata (L.) L.; JX476926; JX476639; JX476755; JX476524. Cissus trothae Gilg \& M. Brandt; JF437318; JX476640; JF437217; JX476525. Cissus tuberosa Moc. \& Sesse ex DC.; JX476927; JX476641; JX476756; JX476526. Cissus tweediana (Baker) Planch.; EF179089; -; -; -. Cissus ulmifolia (Baker) Planch.; JX476928; JX476642; JX476757; JX476527. Cissus verticillata (L.) Nicolson \& C.E. Jarvis; JX476929; JX476643; JX476758; JX476528. Cissus vinosa Jackes; EF179090; -; -; -. Cissus welwitschii (Baker) Planch.; JX476934; JX476651; -; JX476537. Cissus wenshanensis C.L. Li; HM585949; -; -; HM585533. Ampelocissus acapulcensis (Kunth) Planch.; JF437281; JX476543; JF437172; -. Ampelocissus africana (Lour.) Merr. ; JQ182553; JQ182603; -; JQ182448. Ampelocissus ascendiflora Latiff ; -; JQ182583;-; JQ182430. Ampelocissus costaricensis Lundell; -; -; -; AB234911. Ampelocissus elephantina Planch.; HM585932; HM585792; -; HM585516.

Ampelocissus erdwendbergiana Planch.; JF437282; JX476544; JF437173; -. Ampelocissus filipes Planch.; AB234982; -; -; -. Ampelocissus gracilis Planch.; AB234983; -; -; -. Ampelocissus javalensis (Seem.) W.D. Stevens \& A. Pool ; AB234984; -; -; -. Ampelocissus obtusata (Welw. ex Baker) Planch. ; JQ182556; JQ182612; -; JQ182457. Ampelocissus thyrsiflora (Blume) Planch. ; JQ182546; JQ182593; -; JQ182438. Ampelopsis bodinieri (H. Lév. \& Vaniot) Rehder; JF437284; JX476545; JF437175; JX476427. Ampelopsis cantoniensis Planch. ; HM585933; HM585793; JX476667; HM585517. Ampelopsis chaffanjonii (H.Lev.)Rehder; JF437286; -; -; -. Ampelopsis cordata Michx.; AB234997; -; JF437178; -. Ampelopsis delavayana Planch; HM223253; -; -; -. Ampelopsis rubifolia (Wall.) Planch.; JF437293; JX476546; JF437186; JX476428. Cayratia acris F. Muell.; EF179070; -; -; -. Cayratia clematidea (F.Muell.) Domin.; EF179072; -; -; -. Cayratia cordifolia C.Y. Wu ex C.L. Li; HM585934; HM585794; JX476668; HM585518. Cayratia debilis (Baker)Suess.; JF437296; -; -; -. Cayratia eurynema B.L.Burtt; EF179073; -; -; -. Cayratia gracilis (Guill. \& Perr.)Suess.; JF437297; -; -; -. Cayratia imerinensis (Baker) Desc.; HM585936; HM585796; JX476669; HM585520. Cayratia japonica (Thunb.) Gagnep. ; HM585937; -; -; HM585521. Cayratia maritima Jackes; EF179074; -; -; -. Cayratia mollissima Gagnep.; HM585938; HM585798; JX476671; HM585522. Cayratia pedata Gagnep.; AB235005; -; -; -. Cayratia saponaria (Seem. Ex Benth.) Domin.; EF179075; -; -; -. Cayratia trifolia (L.) Domin ; HM585940; -; JX476672; HM585524. Cayratia triternata (Baker) Desc.; HM585941; -; -; -. Clematicissus angustissima (F.Muell.) Planch.; EF179091; -; -; -. Clematicissus opaca (F. Muell) Jackes \& Rossetto; JX476935; JX476652; JX476767; JX476538. Cyphostemma adenocaule (A.Rich.)Wild \& R.B.Drumm.; JX476936; JX476653; JX476768;

JX476539. Cyphostemma bainesii (Hook.f.) Desc.; AB235025; -; -; -. Cyphostemma duparquetii (Planch.) Desc.; JF437324; -; JF437222; -. Cyphostemma horombense Desc.; HM585950; -; -; -. Cyphostemma jiguu Verdc.; JX476937; JX476655; JX476769; JX476540. Cyphostemma kilimandscharicum (Gilg) Wild \& R.B.Drumm.; JF437327; -; -; -. Cyphostemma mappia (Lam.) Galet; AB235026; -; -; -. Cyphostemma maranguense (Gilg) Desc.; JF437329; -; JF437227; -. Cyphostemma montagnacii Desc.; AB235027; -; JF437228; -. Cyphostemma simulans (C.A. Sm.) Wild \& R.B. Drumm; HM585952; -; -; HM585536. Leea aculeata Blume; AB235087; -; -; -. Leea guineensis G. Don.; -; JX476657; JF437235; JX476541. Leea indica (Burm.f.) Merr.; HM585953; -; JX476771; HM585537. Leea macrophylla Roxb. ex Hornem. \& Roxb.; JF437335; JX476659; JF437237; -. Leea spinea Desc.; HM585955; -; -; -. Nothocissus spicifera (Griff.) Latiff; JF437336; JX476660; JF437239; -. Parthenocissus chinensis C.L. Li; HM223263; HM223320; JF437240; HM223373. Parthenocissus henryana (Hemsl.) Graebn. ex Diels \& Gilg; HM223272; HM223329; JF437244; HM223383. Parthenocissus heptaphylla (Buckl.) Britton ex Small; HM223256; -; -; -. Parthenocissus himalayana Planch.; AB235034; -; -; -. Parthenocissus laetevirens Rehder; HM223267; -; -; -. Parthenocissus quinquefolia (L.) Planch.; HM223275; HM223332; JF437246; HM223386. Parthenocissus suberosa Hand.Mazz.; HM223273; HM223330; JF437247; HM223384. Parthenocissus tricuspidata (Sieb. \& Zucc.) Planch.; HM223274; HM223331; JF437248; HM223385. Parthenocissus vitacea (Knerr.) Hitchc.; HM223295; -; -; -. Pterisanthes eriopoda Planch.; -; JX476661; -; -. Pterisanthes heterantha M. Laws; AB235045; AB234965; -; AB234930. Pterisanthes stonei Latiff; AB235046; JX476662; -; -. Rhoicissus digitata Gilg \& Brandt.; AB235047; -; -; -. Rhoicissus
rhomboidea Planch.; AB235049; -; -; -. Rhoicissus tomentosa (Lam.) Wild \& R.B. Drumm; JF437342; JX476663; JF437251; -. Rhoicissus tridentata (L.f.) Wild \& R.B. Drumm, ; JF437341; JX476664; JF437250; -. Tetrastigma glabratum Planch.; HM585995; -; -; -. Tetrastigma hemsleyanum Diels \& Gilg; HM586000; HM585860; -; HM585584. Tetrastigma lanyuense C.E. Chang; HM586009; HM585869; JF437257; HM585593. Tetrastigma laxum Merr.; HM586017; -; -; -. Tetrastigma lenticellatum Planch.; HM586019; -; -; -. Tetrastigma loheri Gagnep.; HM586021; -; -; -. Tetrastigma obtectum (Wall.) Planch; HM586029; HM585888; -; HM585614. Tetrastigma pachyphyllum (Hemsl.) Chun; HM586032; HM585891; JF437259; HM585616. Tetrastigma petraeum Jackes; EF179094; -; -; -. Tetrastigma pyriforme Gagnep.; HM586039; -; -; -. Tetrastigma sichouense C.L.Li; HM586047; -; -; -. Tetrastigma triphyllum (Gagnep.) W.T. Wang; HM586061; HM585919; -; HM585646. Tetrastigma voinierianum Pierre ex Gagnep.; HM586067; -; -; -. Vitis aestivalis Michx. ; HM586070; HM585928; -; HM585655. Vitis betulifolia Diels \& Gilg; JF437352; JX476665; JF437269; -. Vitis flexuosa Thunb.; HM586071; HM585929; -; HM585656. Vitis heyneana Roem. \& Schult; JF437354; JX476666; JF437273; -. Vitis labrusca L.; JX507364; JX507361; JX507362; JX507360. Vitis mengziensis C.L. Li; HM223276; HM223333; JF437270; HM223387. Vitis popenoei J.L. Fennell; HM586072; HM585930; JF437276; HM585657. Vitis riparia Michx; JF437357; -; JF437277; -. Vitis rotundifolia Michx.; HM586073; HM585931; -; HM585658. Vitis thunbergii Siebold \& Zucc.; AB235082; -; -; -. Vitis vinifera L.; -; -; -; -. Vitis vulpina L.; JQ182566; JQ182622; -; JQ182467. Yua austro-orientalis (F.P. Metcalf) C.L. Li; AB235085; -; -; -. Yua thomsoni (M.A. Lawson) C.L. Li; HM223277; HM223335; -; HM223389.

Fig. 1. External morphology of fossilized Cissus seeds from the Hiwegi Formation, Rusinga Island, Kenya. (A) Lateral, (B) apical, (C) basal, (D) ventral views of the Cissus crenulata (Chesters) comb. nov. holotype (V33753). (E) Ventral, (F) lateral, (G) apical, (H) basal views of the Cissus andrewsii sp. nov. holotype. (I) Lateral and (J) basal views of a paratype of C. andrewsii (V68500), and (K) lateral and (L) apical views of another paratype (V68502), demonstrating intraspecific variation in seed size, shape, ornamentation and basal/apical width. (M) Lateral, (N) basal and (O) apical views of the Cissus rusingensis sp. nov. holotype (R117.1981.314). (P, S, V) Lateral, $(\mathrm{Q}, \mathrm{T}, \mathrm{W})$ basal and $(\mathrm{R}, \mathrm{U}, \mathrm{X})$ apical views of paratypes of C. rusingensis (R117.1981.476, R117.1981.604, R117.1981.605 respectively), illustrating intraspecific variation in seed shape (sub-rounded to pyriform), the number of muri and enclosed lumina, the extent of the perichalazal rib and the length of the basal projection. (Y) Lateral, (Z) apical, (AA) basal, (BB) ventral views of the Cissus psilata sp . nov. holotype (V68506). Scale bar is 10 mm in 1 mm increments.

Fig. 2. Ventral infolds revealed in a seed of modern African Cissus populnea Guill. \& Perr. by SRXTM (A-B) and in fossil seeds from the Hiwegi Formation, Rusinga Island, Kenya (C-J), assigned to Cissus herein, by $\mu \mathrm{CT}$. (A, B) SRXTM digital transverse section (DTS) through modern C. populnea, infill of the endotesta in yellow in (B) highlighting the position of the ventral infolds. (C, D) $\mu C T$ DTS through the holotype (V33753) of Cissus crenulata comb. nov., with (D) showing inferred position of the ventral infolds (solid yellow lines) and the margins of the endotesta (dotted yellow lines). (E, F) μ CT DTS through the holotype (V68501) of Cissus andrewsii sp. nov., with (F) showing infill of the inferred endotesta in yellow,
highlighting two parallel, broad ventral infolds. (G,H) μ CT DTS through the holotype (R117.1981.314) of Cissus rusingensis sp. nov., with (H) showing infill of inferred embryo cavity within endotesta in yellow, highlighting two parallel, very broad ventral infolds. (I, J) μ CT DTS through holotype (V68506) of Cissus psilata sp. nov., with (J) showing inferred position of pair of very short, narrow parallel ventral infolds (solid yellow lines). All $\mu \mathrm{CT}$ sections obtained from near ventral part of seeds, where ventral infolds were most likely to be evident, if concealed externally, based on their position in modern Cissus seeds. All scale bars are 1 mm .

Fig. 3. Virtual taphonomy using digital fossils produced from an SRXTM dataset of a modern fruit of Cissus populnea Guill. \& Perr. Specimen oriented in oblique ventral/apical view to best display ventral infolds. (A) Produced by digitally infilling space inside endotesta of seed, showing externally conspicuous pair of ventral infolds, thereby mimicking mineral seed infill processes during fossilization. (B) Produced by digitally concealing ventral infolds in (A) thereby mimicking taphonomic processes that could conceal ventral infolds by mineral infill. Scale bar is 1 mm .

Fig. 4. Comparative tissue organisation in Cissus (A) and Cyphostemma (B) showing how the endotesta obscures ventral infolds in Cyphostemma. (A-B) SRXTM digital transverse sections through modern fruits. (A) Cissus populnea Guill. \& Perr. (B) Cyphostemma maranguense (Gilg) Desc. Scale bars in (A) and (B) are 1 mm .

Fig. 5. Phylogenetic tree of core Cissus clade obtained using maximum likelihood criteria, implemented in RAxML (Stamatakis, 2014), based on plastid DNA sequence data of Vitaceae, with particular focus on genus Cissus. Bootstrap values and
posterior probabilities are indicated at nodes. Clades and seed morphotypes referred to in text are indicated; species placed in seed morphotypes based on internal and external morphology are shown with solid colour highlight, and those tentatively placed in seed morphotypes based on external illustrations and descriptions are distinguished by coloured outline; distribution ranges indicated after species name (Af, Africa; As, Asia; Au, Australia; N, Neotropics); species for which new DNA sequences were produced are highlighted with an asterisk; species for which no data on seed morphology could be found are denoted by a question mark. Scale bar shows degree of genetic change (nucleotide substitutions per site) as distance on the phylogram.

Fig. 6. Major clades recognised in Fig. 5 with representative modern (A-B, D-E, G-H, J-M, O-W) and fossil (C, F, I, N) seed morphologies. Modern images all rotated 90 degrees clockwise from the original source. Seed Morphotype 1 (A-C) characterises the Cissus barbeyana clade; Morphotype 2 (D-F) the C. integrifolia clade; Morphotype 3 (G-I) the C. sciaphila clade and Morphotype 4 (L-N) the C. petiolata clade. Smooth seeds, somewhat similar to Morphotype 4, also characterise the wider clade (in which the C. petiolata clade is basal) indicated by the dotted grey line. Sources of modern images are as follows: (A) C. floribunda (fig. 15.13 in Descoings, 1967); (B) C. barbeyana (fig. 13E in Dewit and Willems, 1960); (D) C. integrifolia (fig. 13F in Dewit and Willems, 1960); (E) C. populnea (pl. 34, fig. 11 in Descoings, 1972); (G) C. smithiana (pl. 52, fig. H in Dewit and Willems, 1960); (H) C. sciaphila (fig. 6.1c in Verdcourt, 1993); (J) C. bosseri (fig. 10.8 in Descoings, 1967); (K) C. leucophlea (fig. 14.13 in Descoings, 1967); (L) C. aralioides (fig. 13C in Dewit and Willems, 1960); (M) C. petiolata (fig. 13A in Dewit and Willems, 1960); (O) C. elongata (fig.
171.10 in Chen et al., 2007); (P) C. subtetragona (fig. 171.2 in Chen et al., 2007); (Q) C. cactiformis (fig. 9.8 in Verdcourt, 1993); (R) C. quadrangularis (pl. 29, fig. 10 in Descoings, 1972); (S) C. cornifolia (pl. 47, fig. 12 in Descoings, 1972); (T) C. pileata (fig. 13.9 in Descoings, 1967); (U) C. repens (fig. 2B in Jackes, 1988); (V) C. hastata (fig. 5C in Jackes, 1988); (W) C. diffusiflora (pl. 44, fig. 11 in Descoings, 1972). Seeds are not to scale and are all shown in lateral view, except (O) and (P), which are shown in apical view.

Fig. 7. SRXTM digital transverse sections through fruits of modern African Cissus, using representative specimens to illustrate typical features of each seed morphotype listed in Table 1. (A) Morphotype 1, Cissus integrifolia Guill. \& Perr. (B) Morphotype 2, Cissus dasyantha Gilg \& M.Brandt (C) Morphotype 3, Cissus tiliifolia Planch. (D) Morphotype 4, Cissus petiolata Hook.f.. Transverse sections were obtained from near ventral part of fruits to best show features of ventral infolds and characteristics of seed coat layers. All scale bars are 1 mm .

Cissus barbeyana clade Central, East \& West Africa

Cissus integrifolia clade Central, East \& West Africa

Cissus sciaphila clade Central, East \& West Africa; Southeast Asia; Australia
other African Cissus

Cissus petiolata clade
Central, East, South \& West Africa; Arabia

C. elongata -

C. subtetragona clade Australasia
C. pseudoguerkeana -
C. albiporcata clade
C. E, N, S and W Africa; Arabia; SE and SAsia

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S1 - Page 1

Appendix S1. Herbarium sheet for seed morphotypes of sixteen modern species of African Cissus and three species of Cyphostemma studied. All specimens sampled from the Royal Botanic Gardens, Kew Herbarium (K), except C. dasyantha (from the Botanic Gardens Meise Herbarium (BR), Belgium). References to literature illustrating seeds of these species are also provided.

Species	Collector (collector number)	Country/ region of collection	Seed morphotype (see text and Table 1 for explanation of morphotypes)	Literature with seed Illustrations of this species
Cissus barbeyana De Wild. \& T.Durand	S. Lisowski (16406)	Zaire (Congo)	2	fig. 13e in Dewit and Willems (1960); pl. 42, fig. 10 in Descoings (1972)
Cissus bosseri Desc.	P.B. Phillipson \& S. Rabesihanaka (3140)	Mascarene Islands	Unlike fossils, shares some features with Morphotype 1 but lacks ornament on lateral faces	fig. 10 in Descoings (1967)
Cissus dasyantha Gilg \& M.Brandt	J. Louis (13410)	Congo	2	fig. 13j in Dewit and Willems (1960)
Cissus dinklagei Gilg \& M.Brandt	A.J.M. Leeuwenberg (5207)	Masok (Tanzania)	Unlike fossils, has very variable seed morphology in floral illustrations, shares some features with Morphotype 1 but differs in that the most prominent ridge is central not marginal	fig. 13g in Dewit and Willems (1960); pl. 40, fig. 10 in Descoings (1972)
Cissus integrifolia (Baker) Planch.	C.M. Taylor, R.E. Gereau \& J. Lovett (8517a)	Iringa (Tanzania)	1	fig. 13f in Dewit and Willems (1960)
Cissus integrifolia (Baker) Planch.	C.M. Taylor, R.E. Gereau \& J. Lovett (8517b)	Iringa (Tanzania)	1	fig. 13f in Dewit and Willems (1960)
Cissus lebrunii Dewit	B.A. Nkongmeneck (1592)	Cameroon	3	fig. 13k in Dewit and Willems (1960)
Cissus oreophila Gilg \& M.Brandt	W.J. Harley (693A)	Liberia	Unlike fossils, as this is a two-seeded specimen	pl. 39, fig. 11 in Descoings (1972)
Cissus petiolata Hook.f.	L.P.A. \& W.R.Q. (9365)	Tanzania	4	fig. 13a in Dewit and Willems (1960); pl. 33, fig. 11 in Descoings (1972); fig. 3 in Verdcourt (1993)
Cissus pileata Desc.	H. Humbert (18981)	Madagascar	Unlike fossils, shares some features with Morphotype 3, but has only very irregular ridges on the lateral faces that do not form a reticulum	fig. 13 in Descoings (1967)
Cissus planchoniana Gilg	W. Robyns (606)	Congo	Unlike fossils, shares some features with Morphotype 2 but has long pronounced ridges radiating right across the lateral faces	pl. 43, fig. 11 in Descoings (1972)
Cissus polyantha Gilg \& M.Brandt	F.C. Deighton (5208)	Kokoru, Gaura (Sierra Leone)	Unlike fossils, seeds very variable in surface ornament in floral illustrations and SRXTM videos, from smooth to extensively ridged, including specimens that fall into Morphotype 3	fig. 13h in Dewit and Willems (1960); pl. 36, fig. 11 in Descoings (1972)
Cissus polyantha	M. Sacande, L. Sanou,	Burkina Faso	Unlike fossils, seeds very variable in surface	fig. 13h in Dewit and Willems (1960);

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S1 - Page 2

Gilg \& M.Brandt	M. van Slageren (MSLSMS-1643)		ornament in floral illustrations and SRXTM videos, from smooth to extensively ridged, including specimens that fall into Morphotype 3. This specimen studied by SRXTM is also two-seeded.	pl. 36, fig. 11 in Descoings (1972)
Cissus populnea Guill. \& Perr.	R.A.A. Oldeman (350)	Tehini	1	pl. 34, fig. 10 in Descoings (1972)
Cissus rondoensis Verdc.	S. Bidgood, R. Abdallah \& K. Vollesen (1553)	Tanzania	Unlike fossils, descriptions in Verdcourt (1993) state that seeds are essentially smooth but have two to three transverse ridges.	
Cissus sciaphila Gilg	B. Mhoro (UMBC287)	Tanzania	3	
Cissus smithiana (Baker) Planch.	R.P. Hulstaert (416)	Congo	Unlike fossils, as this is a two-seeded specimen	fig. 6 in Verdcourt (1993)
Cissus tiliffolia Planch.	G. Eilu (240)		(1960); fig. h in Dewit and Willems pl. 32, fig. 11 in Descoings (1972)	
Cyphostemma adenocaule (Steud. ex A.Rich.) Desc. ex Wild \& R.B.Drumm.	H. Ern, B. Leuenberger, W. Schwarz (1446)	Togo	3	n/a
Cyphostemma heterotrichum (Gilg \& R.E.Fr.) Desc. ex Wild \& R.B.Drumm.	Carter, Abdallah, Newton (2537)	Tanzania		pg. 471, fig. e in Dewit and Willems (1960); pl. 28, fig. 11 in Descoings (1972); fig. 20 in Verdcourt (1993)
Cyphostemma maranguense (Gilg) Desc.	C.G. Rogers (2)	Kenya		fig. 18 in Verdcourt (1993)

Adams et al-American Journal of Botany 103(部): \#\#\#\#\#\#\# 2016. - Data Supplement S2 - Page 1
Appendix S2, Comparison of tissue and cellular detail revealed by SRXTM and routine μ CT in a modern fruit of Cissus popuinea Guill. \& Perr., where the digital transverse section (DTS) is through the part of the seed distal to the extemal ventral infolds. (A) SRXTM and (B) μ CT DTS with labelled identifiable seed tissues (storage and chalazal tissues, testa, fruit wall), the distinction between endotesta and exotesta can be made using the SRXTM DTS but this distinction is not as clear using routine $\mu \mathrm{CT}$. (C) SRXTM and (D) μ CT DTS at higher magnification with labelled tissue layers as for (A) and (B), showing the greater cellular detail, ability to distinguish layers in the seed coat and the distribution of phases of different X-ray attenuation in the fruit in SRXTM. White boxes in (A) and (B) outline the areas shown at higher magnification in (C) and (D). Scale bars in (A) and (B) are 1 mm and in (C) and (D) are 0.5 mm .

Appendix S3. Further details of the phylogenetic analyses.

Total genomic DNA was extracted from 0.2 g of herbarium specimen material using a modified version of the $2 \times$ cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle, 1987). The total DNA was purified using a caesium chloride/ethidium bromide gradient $(1.55 \mathrm{~g} / \mathrm{mL})$ followed by a dialysis procedure for long-term storage in the DNA \& Tissue Collections at RBG Kew (http://apps.kew.org/dnabank/homepage.html). The trnL intron and $t r n L-F$ spacer were amplified in two reactions using primers c / d and e/f, respectively (Taberlet et al., 1991). The rps16 intron was amplified using the primers rps16F and rps16R (Shaw et al., 2005). The polymerase chain reactions (PCRs) for the above markers were performed in $25 \mu \mathrm{~L}$ volumes, containing $12.5 \mu \mathrm{~L}$ of DreamTaq PCR Master Mix (2x) (4 mM MgCl2; Thermo Fisher Scientific, Waltham, Massachusetts, USA), 4 $\mu \mathrm{L}$ TBT-PAR (trehalose, bovine serum albumin (BSA), and polysorbate-20 (Tween-20); Samarakoon et al., 2013), $0.5 \mu \mathrm{~L}$ of each primer (100 ng/ $\mu \mathrm{L}$) and $1 \mu \mathrm{~L}$ of DNA template. A 'long and cold' programme was used with an initial denaturation at $80^{\circ} \mathrm{C}$ for 5 mins, followed by 35 cycles of $95^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}(t r n L-F)$ or $48^{\circ} \mathrm{C}(r p s 16)$ for 1 min and 65 ${ }^{\circ} \mathrm{C}$ for 5 mins, completed with a final extension of $65^{\circ} \mathrm{C}$ for 4 mins. All amplifications were performed on a 9700 GeneAmp thermocycler (ABI, Warrington, UK). All PCR products were purified with either the QIAquick PCR kit (Qiagen, Hilden, Germany) or the Nucleospin Extract II kit (Machery-Nagel, Düren, Germany), following the manufacturer protocols. Cycle sequencing reactions were performed in $5 \mu \mathrm{~L}$ reactions using $0.5 \mu \mathrm{~L}$ of BigDye ${ }^{\circledR}$ Terminator cycle sequencing chemistry (v3.1; ABI, Warrington, UK) and the same primers as for PCR. Complementary strands were sequenced on an ABI3730 automated sequencer and then assembled and aligned in Geneious (Biomatters Limited, Auckland, New Zealand). The newly produced DNA sequences are available from GenBank (see GenBank accession numbers in Appendix 1 of main paper).

Publically available sequences (Appendix 2) were downloaded using Geneious 7.0.2 (Biomatters Limited, Auckland, New Zealand) and matrices (including sequences produced for the present study) were aligned using MUSCLE (Edgar, 2004) in Geneious. Alignments used to produce the phylogeny are available at from TreeBASE (https://treebase.org; study 18491). A phylogenetic analysis was performed using the maximum likelihood criterion as implemented in the programme RAxML v8.1.24 (Stamatakis, 2014) using the rapid bootstrap algorithm with 1000 replicates and a search for the best-scoring tree. The analysis was run on the Cipres Science Gateway portal (www.phylo.org). Divergence time estimates were obtained using the Bayesian inference approach implemented in the package BEAST v.1.8.2 (Drummond and Rambaut, 2007). The plastid regions were combined and the GTR+I+G evolutionary model was applied to the resulting matrix. An uncorrelated relaxed molecular clock with a lognormal distribution of rates and a birth-death speciation model were used. Two analyses were run on the Cipres Science Gateway portal (www.phylo.org) for 50 million generations each, sampling one tree every $1000^{\text {th }}$ generation. Parameter convergence was confirmed using the software Tracer v1.6 (Rambaut et al., 2014). Following the combination of these two runs using LogCombiner v1.8.2 (Drummond and Rambaut, 2007), a maximum clade credibility tree with median branch lengths and 95\% highest posterior density (HPD) interval on nodes was reconstructed using TreeAnnotator 1.8.2 (Drummond and Rambaut, 2007), after an initial burn-in period of five million generations had been removed (10\%).

Appendix S4. Seed morphotypes for all seeds from clades within core Cissus (Fig. 5) containing African species (fifty-two species in total); those highlighted in grey were studied by SRXTM.

Species	Clade in phylogeny (Figs. 5 \& 6)	Seed morphotype	Seed illustration and/or description in literature
Cissus adnata Roxb.	C. sciaphila clade	3	fig. 3B and 3C and p. 489 in Jackes (1988) p. 701 in Lu (1993); fig. 172.7 and 172.8 and p. 188 in Chen et al. (2007)
 L.E.Newton	C. pseudoguerkeanaC. albiporcata clade	no published illustration or description found	
Cissus annamica Gagnep.	C. elongata-C. subtetragona clade	no published illustration or description found	
Cissus aphyllantha Gilg	C. sciaphila clade	3	p. 38 in Verdcourt (1993)
Cissus aralioides (Welw. ex Baker) Planch.	C. petiolata clade	4	fig. 13C and p. 548 in Dewit and Willems (1960); pl. 30, figs. 10-12 and p. 88 in Descoings (1972); fig. 11.10 and p. 47 in Verdcourt (1993)
Cissus auricoma Desc.	C. microdonta-C. auricoma clade	3	figs. 12.6 and 12.7 and p. 89 in Descoings (1967)
Cissus barbeyana De Wild. \& T.Durand	C. barbeyana clade	2	fig. 13E and p. 525 in Dewit and Willems (1960); pl. 42, fig. 10 and p. 118 in Descoings (1972)
Cissus bosseri Desc.	C. microdonta-C. auricoma clade	unlike fossils	fig. 10.8 and p. 83-84 in Descoings (1967)
Cissus cactiformis Gilg	C. pseudoguerkeanaC. albiporcata clade	4	fig. 9.8 and p. 40 in Verdcourt (1993)
Cissus cornifolia (Baker) Planch.	C. cornifolia-C. trothae clade	unlike fossils	p. 519 in Dewit and Willems (1960); pl. 47, figs. 11-12 and p. 132 in Descoings (1972); fig. 8.9 and p. 36 in Verdcourt (1993)
Cissus dasyantha Gilg \& M.Brandt	unknown	2	fig. 13J and p. 543 in Dewit and Willems (1960)
Cissus diffusa (Miq.) Amshoff	C. elongata-C. subtetragona clade	no published illustration or description found	
Cissus diffusiflora (Baker) Planch.	C. diffusiflora clade	unlike fossils	p. 528-529 in Dewit and Willems (1960); pl. 44, figs. 11-12 and p. 124 in Descoings (1972); p. 24 in Verdcourt (1993)
Cissus dinklagei Gilg \& M.Brandt	unknown	variable seed morphology	fig. 13G and p. 515 in Dewit and Willems (1960); pl. 40, fig. 10 and p. 114 in Descoings (1972)
Cissus elongata Roxb.	C. elongata-C. subtetragona clade	4	fig. 171.10 and p. 186 in Chen et al. (2007)

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S4 - Page 2

Cissus faucicola Wild \& R.B.Drumm.	C. pseudoguerkeana- C. albiporcata clade	4	p. 48 in Verdcourt (1993)
Cissus floribunda (Baker) Planch.	C. barbeyana clade	2	figs. 15.12 and 15.13 and p. 138 in Descoings (1967)
Cissus integrifolia (Baker) Planch.	C. integrifolia clade	1	fig. 13F and p. 514 in Dewit and Willems (1960); p. 16 in Verdcourt (1993)
Cissus javana DC.	C. elongata-C. subtetragona clade	unlike fossils	fig. 170.8 and 170.9 and p. 187 in Chen et al. (2007)
Cissus lanea Desc.	C. microdonta-C. auricoma clade	no published illustration or description found	
Cissus lebrunii Dewit	unknown	3	fig. 13K and p. 543 in Dewit and Willems (1960)
Cissus leucophlea (Scott-Elliot) Suess.	C. microdonta-C. auricoma clade	unlike fossils	figs. 14.12 and 14.13 and p. 132 in Descoings (1967)
Cissus madecassa Desc.	C. microdonta-C. auricoma clade	unlike fossils	figs. 13.4 and 13.5 and p. 112 in Descoings (1967)
Cissus microdonta (Baker) Planch.	C. microdonta-C. auricoma clade	unlike fossils	figs. 15.4 and 15.5 and p. 100 in Descoings (1967)
Cissus oliveri (Engl.) Gilg ex Engl.	C. petiolata clade	unlike fossils	p. 535 in Dewit and Willems (1960); p. 32 in Verdcourt (1993)
Cissus oreophila Gilg \& M.Brandt	unknown	3	pl. 39, fig. 11 and p. 112 in Descoings (1972)
Cissus pentaclada Jackes	C. cornifolia-C. trothae clade	unlike fossils	fig. 3D and p. 491 in Jackes (1988)
Cissus petiolata Hook.f.	C. petiolata clade	4	fig. 13A and p. 515 in Dewit and Willems (1960); pl. 33, fig. 11 and p. 97 in Descoings (1972); fig. 3.9 and p. 16 in Verdcourt (1993)
 L.E.Newton	C. pseudoguerkeana- C. albiporcata clade	no published illustration or description found	
Cissus pileata Desc.	C. cornifolia-C. trothae clade	unlike fossils	figs. 13.9 and 13.10 and p. 119 in Descoings (1967)
Cissus planchoniana Gilg	unknown	unlike fossils	p. 520 in Dewit and Willems (1960); pl. 43, figs. 11-12 and p. 120 in Descoings (1972); p. 23-24 in Verdcourt (1993)
Cissus polita Desc.	C. petiolata clade	no published illustration or description found	
Cissus polyantha Gilg \& M.Brandt	C. sciaphila clade	variable seed morphology, including specimen like Morphotype 3	fig. 13 H and p. 536 in Dewit and Willems (1960); pl. 36, figs. 11-12 and p. 104 in Descoings (1972); p. 30 in Verdcourt (1993)
Cissus populnea Guill. \& Perr.	C. integrifolia clade	1	p. 531 in Dewit and Willems (1960); pl. 34, figs. 10 and 11 and p. 100 in Descoings (1972); p. 19 in Verdcourt (1993)

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S4 - Page 3

Cissus producta Afzel.	C. cornifolia-C. trothae clade	unlike fossils	fig. 13B and p. 524 in Dewit and Willems (1960); pl. 46, fig. 10 and p. 130 in Descoings (1972); p. 22 in Verdcourt (1993)
Cissus pseudoguerkeana Verdc.	C. pseudoguerkeana- C. albiporcata clade	no published illustration or description found	
Cissus quadrangularis L.	C. pseudoguerkeanaC. albiporcata clade	4	p. 513 in Dewit and Willems (1960); p. 91 in Descoings (1967); pl. 29, figs. 10 and 11 and p. 87 in Descoings (1972); p. 41 in Verdcourt (1993)
Cissus quarrei Dewit	C. sciaphila clade	3	p. 537 in Dewit and Willems (1960); p. 32 in Verdcourt (1993)
Cissus reniformis Domin	C. elongata-C. subtetragona clade	4	figs. 2F-G in Jackes (1988)
Cissus rhodotricha (Baker) Desc.	C. sciaphila clade	3	figs. 12.15 and 12.16 and p. 116 in Descoings (1967)
Cissus rondoensis Verdc.	C. petiolata clade	unlike fossils	p. 20 in Verdcourt (1993)
Cissus rostrata (Miq.) Korth. ex Planch.	C. sciaphila clade	3	p. 326 in Yeo et al. (2012)
Cissus rotundifolia Vahl	C. petiolata clade	4	p. 519 in Dewit and Willems (1960); p. 21 in Verdcourt (1993)
Cissus rubiginosa (Welw. ex Baker) Planch.	C. cornifolia-C. trothae clade	unlike fossils	pl. 53, fig. E and p. 540 in Dewit and Willems (1960); pl. 31, figs. 12 and 13 and p. 92 in Descoings (1972); fig. 4E and p. 26 in Verdcourt (1993)
Cissus sagittifera Desc.	C. barbeyana clade	2	figs. 14.8 and 14.9 and p. 130 in Descoings (1967)
Cissus sciaphila Gilg	C. sciaphila clade	3	figs. 5.10 and 6.1 and p. 30 in Verdcourt (1993)
Cissus smithiana (Baker) Planch.	C. sciaphila clade	3	pl. 52, fig. H and p. 534 in Dewit and Willems (1960); pl. 32, fig. 11 and p. 94 in Descoings (1972)
Cissus subtetragona Planch.	C. elongata-C. subtetragona clade	4	fig. 171.2 and p. 185 in Chen et al. (2007)
 L.E.Newton	C. petiolata clade	4	p. 18 in Verdcourt (1993)
Cissus tiliifolia Planch.	C. sciaphila clade	3	p. 35 in Verdcourt (1993)
Cissus trothae Gilg \& M.Brandt	C. cornifolia-C. trothae clade	no published illustration or description found	
Cissus welwitschii (Baker) Planch.	C. petiolata clade	4	p. 19 in Verdcourt (1993)

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 1

Appendix S5. List of herbarium sheets used to provide habit and habitat data for modern Cissus species (source 4 in Table 2 of main paper). Herbarium abbreviations: DSM (University of Dar es Salam Herbarium, Tanzania); G (Geneva General Herbarium); IFAN (Institut Fondamental d'Afrique Noire Herbarium); K (Royal Botanic Gardens, Kew Herbarium); L (National Herbarium of the Netherlands at Leiden University); MO (Missouri Botanical Garden Herbarium); P (Muséum National d'Histoire Naturelle Herbarium, Paris); TAN (Tsimbazaza Herbarium, Madagascar).
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Species } & \text { Habit } & \text { Habitat } & \begin{array}{l}\text { Region/ } \\ \text { Country of } \\ \text { Collection }\end{array} & \begin{array}{l}\text { Collector } \\ \text { (Collection } \\ \text { Number) }\end{array} & \begin{array}{l}\text { Herbarium } \\ \text { (Herbarium } \\ \text { Barcode) }\end{array} & \begin{array}{l}\text { Accession } \\ \text { Number }\end{array} \\ \hline \begin{array}{l}\text { Cissus } \\ \text { adnata Roxb. }\end{array} & \text { Scrambler } & \begin{array}{l}\text { Remnant primary } \\ \text { forest on south facing } \\ \text { slope }\end{array} & \text { Yunnan, China } & \begin{array}{ll}\text { Li Heng (9095) }\end{array} & \begin{array}{l}\text { (Unknown) }\end{array} & \text { (Unknown) } \\ \text { (Untp://www.tropicos.org/Specimen } \\ \text { /1402887 }\end{array}\right]$

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 2

		thicket bordering deciduous secondary growth forest					
	Climber	Riparian forest	Borneo, Indonesia	A. Kostermans (21453)	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~L} 0672603) \end{aligned}$	L. 2334780	http://medialib.naturalis.nl/file/id/L .2334780/format/large
	Climbingscrambling vine	Open areas in evergreen forest and open rocky thickets	Saraburi, Thailand	J.F. Maxwell (74546)	(L 0194871)	L. 2328773	http://medialib.naturalis.nl/file/id/L .2328773/format/large
	Deciduous woody climber	Open degraded mixed deciduous secondary growth, margins of evergreen and deciduous seasonal forest, canopy to 25 m	Ubon Ratchathani, Thailand	Martin Greijmans (184)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0761507) \end{aligned}$	L. 3928674	http://medialib.naturalis.nl/file/id/L .3928674/format/large
	Vine	Thicket	Queensland, Australia	B.R. Jackes (unknown)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0761883) \end{aligned}$	L. 4254130	http://medialib.naturalis.nl/file/id/L .4254130/format/large
	Creeper	Dipterocarp forest	Borneo, Indonesia	M.M.J. van Balgooy (5746)	(L 0672608)	L. 2334775	http://medialib.naturalis.nl/file/id/L .2334775/format/large
	Slender climber	Mixed lowland forest	Borneo, Brunei	M.J.E. Coode et al. (6797)	(L 0672609)	L. 2334774	http://medialib.naturalis.nl/file/id/L .2334774/format/large
	Solitary climber, 1 m high	Much disturbed primary forest ca. 40 m high, on alluvial soil near a river. Terrain flat to gently sloping.	Sulawesi, Indonesia	E.F. de Vogel (5103)	(L 0483122)	L. 2334730	http://medialib.naturalis.nl/file/id/L .2334730/format/large
	Woody climber	Partly open, alluvial area along a small stream in degraded mixed evergreen and deciduous hardwood forest with much bamboo, in overall deciduous dipterocarpoak and pine, seasonal forest	Chiang Mai, Thailand	$\begin{aligned} & \text { J.F. Maxwell (95- } \\ & \text { 449) } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0762949) \end{aligned}$	L. 4254251	http://medialib.naturalis.nl/file/id/L .4254251/format/large
	Shrubby creeper	Sandstone outcrop in broadleaf scrub	Northern Territory, Australia	 Schodde (AE 706)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0746142) \end{aligned}$	L. 2334721	http://medialib.naturalis.nl/file/id/L .2334721/format/large
	Climber (5 m)	Forest edge with clearing in remnant primary forest	Sumatra, Indonesia	W.J.J.O. de Wilde and B.E.E. de Wilde-Duyfjes (21320)	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~L} 0746262) \end{aligned}$	L. 2328679	http://medialib.naturalis.nl/file/id/L .2328679/format/large
	Climber (ca. 8m	Forest edge in primary	Sumatra,	W.J.J.O. de Wilde	L	L. 2328682	http://medialib.naturalis.nl/file/id/L

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 3

	tall)	rain forest	Indonesia	and B.E.E. de Wilde-Duyfjes (19351)	(L 0746260)		.2328682/format/large
	(Unknown)	Mixed deciduous forest	Phitsanulok, Thailand	Kai Larsen, T. Smitinand \& E. Warncke (877)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0194878) \end{aligned}$	L. 2328770	http://medialib.naturalis.nl/file/id/L .2328770/format/large
	Vine	Partly shaded area in the mixed evergreen/deciduous forest in a burned area with some bamboo	Chiang Mai, Thailand	J.F. Maxwell (89600)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0194777) \end{aligned}$	L. 2328772	http://medialib.naturalis.nl/file/id/L .2328772/format/large
	(Unknown)	Monsoon forest, busy and light	Sumbawa, Indonesia	J. Elbert (4204)	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~L} 0746182) \end{aligned}$	L. 2334738	http://medialib.naturalis.nl/file/id/L .2334738/format/large
	Climber	Bushes by forest stream	Ranong, Thailand	A.F.G. Kerr (16877)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0194781) \end{aligned}$	L. 2328775	http://medialib.naturalis.nl/file/id/L .2328775/format/large
	Sprawling vine	Open place along a river, on granite bedrock, in a dry dipterocarp forest	Chiang Mai, Thailand	J.F. Maxwell (87687)	(L 0194778)	L. 2328774	http://medialib.naturalis.nl/file/id/L .2328774/format/large
	(Unknown)	Deciduous forest	Chiang Mai, Thailand	T. Shimizu, H. Koyama \& M. Hutoh (T10433)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0194837) \end{aligned}$	L. 2328776	http://medialib.naturalis.nl/file/id/L .2328776/format/large
	Deciduous vine	Open, disturbed, degraded, secondary growth thicket in degraded mixed evergreen and deciduous, seasonal, hardwood forest with bamboo	Phayao, Thailand	$\begin{aligned} & \text { J.F. Maxwell (98- } \\ & \text { 747) } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0762744) \end{aligned}$	L. 4254532	http://medialib.naturalis.nl/file/id/L .4254532/format/large
	Solitary climber, 8m high	Disturbed primary forest near streamlet	Sulawesi, Indonesia	E.F. de Vogel (5592)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0483124) \end{aligned}$	L. 2334731	http://medialib.naturalis.nl/file/id/L .2334731/format/large
	(Unknown)	Partly shaded areas in the mixed evergreen \& deciduous forest, base of limestone cliffs, rugged limestone terrain	Kanchanaburi, Thailand	J.F. Maxwell (93923)	(L 0762963)	L. 4254263	http://medialib.naturalis.nl/file/id/L .4254263/format/large
	Vine	Second growth forest	Luzon, Philippines	H.G. Gutierrez (6175)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0746209) \end{aligned}$	L. 2334793	http://medialib.naturalis.nl/file/id/L .2334793/format/large
	Climber	Riparian forest	Borneo, Malaysia	Abang Mohtar et al. (S.49581)	(L 0672610)	L. 2334773	http://medialib.naturalis.nl/file/id/L .2334773/format/large
Cissus	Vine	Rainforest	Antananarivo,	L.C. Barnett \&	MO	3333595	http://www.tropicos.org/Specimen

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 4

floribunda (Baker) Planch.			Madagascar	Laurence J. Dorr (187)	(MO-163568)		/177642
	(Unknown)	Forest	Antananarivo, Madagascar	Georges Cremers (1299)	(Unknown)	(Unknown)	http://www.tropicos.org/Specimen /1204127
	Vine (climbing to 3 m)	Tropical moist forest	Antsiranana, Madagascar	$\begin{aligned} & \text { George E. Schatz } \\ & (2405) \end{aligned}$	$\begin{aligned} & \hline \mathrm{MO} \\ & (\mathrm{MO}-163570) \end{aligned}$	3708677	http://www.tropicos.org/Specimen /178235
	Liana	Rainforest towards a small lake	Antsiranana, Madagascar	Armand Rakotozafy \& Jeannine I. Raharilala (2295)	TAN (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /1103606
	Liana	Dense rainforest	Antsiranana, Madagascar	Richard Razakamalala (3598)	MO (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /3453897
	Liana (4m in height)	Forest	Antsiranana, Madagascar	C. Rakotovao \& et al. (3148)	MO (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /2982381
	Liana	Rainforest	Fianarantsoa, Madagascar	Armand Rakotozafy (196)	TAN (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /1204111
	Vine	Disturbed forest and edges	Fianarantsoa, Madagascar	Thomas B. Croat (30103)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163571) } \end{aligned}$	2322603	http://www.tropicos.org/Specimen /1354458
	(Unknown)	Rainforest	Fianarantsoa, Madagascar	Bernard M. Descoings (1110)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163121) } \end{aligned}$	2211740	http://www.tropicos.org/Specimen /176965
	Liana	Dense rainforest	Fianarantsoa, Madagascar	N.M. Andrianjafy \& et al. (670)	MO (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /2704015
	Climbing liana	Dense rainforest	Fianarantsoa, Madagascar	N.M. Andrianjafy \& et al. (747)	MO (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /2705111
	Slender liana (to ca. 10 m long)	Rainforest	Fianarantsoa, Madagascar	S.T. Malcomber (1288)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163596) } \end{aligned}$	4574042	http://www.tropicos.org/Specimen /176950
Cissus oreophila Gilg \& M.Brandt	Climber	Riverine forest border	Gabon	Adriaan M. Louis (1019)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163214) } \end{aligned}$	4573103	http://www.tropicos.org/Specimen /1348861
	(Unknown)	Forest regrowth remains on the edge of a Sphagnum pond	Brazzaville, Congo	Bernard M. Descoings (5917)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163221) } \end{aligned}$	2211723	http://www.tropicos.org/Specimen /1348913
	Liana	Swamp region	Brazzaville, Congo	Bernard M. Descoings (6988)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163215) } \end{aligned}$	2211724	http://www.tropicos.org/Specimen /1348877
	Herbaceous vine ($20-25 \mathrm{~m}$)	Dense primary forest with large trees and vines	Equatorial Guinea	Manuel Fidalgo de Carvalho (3596)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163206) } \end{aligned}$	4325779	http://www.tropicos.org/Specimen /1348780
	Climber	Forest edge	Ivory Coast	J. Bokdam (2785)	$\begin{array}{\|l\|} \hline \text { MO } \\ \text { (MO-163217) } \end{array}$	2422492	http://www.tropicos.org/Specimen /1348885
	Creeping herb	Secondary forest	Ivory Coast	C. Geerling \& J. Bokdam (2471)	$\begin{aligned} & \hline \text { MO } \\ & \text { (MO-163216) } \end{aligned}$	2469995	http://www.tropicos.org/Specimen /1348881
	(Unknown)	Savanna edge and hill forest regrowth	Central African Republic	Bernard M. Descoings (10441)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163219) } \end{aligned}$	2211725	http://www.tropicos.org/Specimen /1348892
	Creeper	High forest	Liberia	P. Adames (565)	IFAN	IFAN52664	http://plants.jstor.org/stable/10.55

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 5

					(IFAN52664)		55/al.ap.specimen.ifan52664
Cissus polita Desc.	(Unknown)	Hills and limestone plateau, seasonal deciduous forest	Antsiranana, Madagascar	H. Humbert (19215)	$\begin{aligned} & P \\ & \text { (P00061314) } \end{aligned}$	P00061314	http://plants.jstor.org/stable/10.55 55/al.ap.specimen.p00061314
	Liana (3m)	Dry forest	Antsiranana, Madagascar	F. Ratovoson (1234)	MO (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /3225598
	Liana (3m height)	Dry forest on sandy soil	Antsiranana, Madagascar	Andriamalala Rakotondrafara (400)	$\begin{aligned} & \text { MO } \\ & (\mathrm{MO}-1059463) \end{aligned}$	5957540	http://www.tropicos.org/Specimen /2844837
	Liana	Degraded dry forest	Antsiranana, Madagascar	Stéphan Rakotonandrasana (938)	$\begin{aligned} & \text { MO } \\ & \text { (MO-1441510) } \end{aligned}$	5996128	http://www.tropicos.org/Specimen /2871026
	Climbing shrub	Rocky sandstone woodland	Antsiranana, Madagascar	H. Perrier de la Bâthie (6185)	P (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /177361
	Liana (1.5m)	Dense dry forest	Antsiranana, Madagascar	L. Nusbaumer \& P. Ranirison (1128)	G (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /100647659
	Liana	Savanna grassland with residual groves of dry deciduous forest	Antsiranana, Madagascar	M. BardotVaucoulon \& G. Véné (1607)	P (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /100333665
Cissus rondoensis Verdc.	Herbaceous climber to ca. 4 m	Moist evergreen forest	Lindi, Tanzania	G. Sally Bidgood, R.D. Abdallah \& K.B. Vollesen (1553)	DSM (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /2855173
	Semi-woody climber to $3 m$ tall	Dense forest thicket	Lindi, Tanzania	G. Sally Bidgood, R.D. Abdallah \& K.B. Vollesen (1442)	$\begin{aligned} & \text { K } \\ & \text { (K000322840) } \end{aligned}$	K000322840	http://plants.jstor.org/stable/10.55 55/al.ap.specimen.k000322840
Cissus rostrata (Miq.) Korth. ex Planch.	Liana	Secondary forest	North Maluku, Indonesia	Tjut Jul Fatisa Bangun, Mary Merello, Iska Gushilman, Idris Haris \& Roji Mahroji (11)	$\begin{aligned} & \mathrm{MO} \\ & (\mathrm{MO}-2702487) \end{aligned}$	6434347	http://www.tropicos.org/Specimen /100530014
	Liana (at 1m high)	Disturbed forest	North Maluku, Indonesia	Lalao Andriamahefarivo, Deby Arifiani, Richard Bahar Fabanyo (137)	$\begin{aligned} & \mathrm{MO} \\ & (\mathrm{MO}-2702471) \end{aligned}$	6431952	http://www.tropicos.org/Specimen /100554547
	Climber	Foothill primary rain forest	Negeri Sembilan, Malaysia	$\begin{aligned} & \text { Eric Gardette (E.G } \\ & \text { 2112) } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0761437) \end{aligned}$	L. 4254449	http://medialib.naturalis.nl/file/id/L .4254449/format/large

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 6

	Climber	Secondary forest, flatland	Borneo, Malaysia	A.A. Nordin (86099)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672368) \end{aligned}$	L. 2333842	http://medialib.naturalis.nl/file/id/L .2333842/format/large
	Climber	Forest river bank	Borneo, Malaysia	Aban Gibot (94480)	L	L. 2333839	http://medialib.naturalis.nl/file/id/L .2333839/format/large
	Scrambling shrub	River banks in rainforest seral growths	New Guinea, Indonesia	L.J. Brass (13064)	(L 0745287)	L. 2333803	http://medialib.naturalis.nl/file/id/L .2333803/format/large
	Vine	Secondary growth in area intermediate between heath and dipterocarpaceous forests	Borneo, Malaysia	Ding Hou (391)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672375) \end{aligned}$	L. 2333834	http://medialib.naturalis.nl/file/id/L .2333834/format/large
	Tall woody climber (30 feet)	River bank in disturbed primary forest	Borneo, Malaysia	$\begin{aligned} & \text { P.S. Ashton } \\ & \text { (S.18398) } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672365) \end{aligned}$	L. 2333845	http://medialib.naturalis.nl/file/id/L .2333845/format/large
	Climber (6 m tall)	Forest edge in primary peat swamp and marshy forest on flat land	Sumatra, Indonesia	W.J.J.O. de Wilde and B.E.E. de Wilde-Duyfjes (20538)	$(\mathrm{L} 0745311)$	L. 2333873	http://medialib.naturalis.nl/file/id/L .2333873/format/large
	Climber	Rainforest (Eucalyptus deglupta dominant)	Sulawesi, Indonesia	M.M.J. van Balgooy (3421)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0745292) \end{aligned}$	L. 2333797	http://medialib.naturalis.nl/file/id/L .2333797/format/large
	Climber	Bank of a forest brook	Borneo, Indonesia	F.H. Endert (3387)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672539) \end{aligned}$	L. 2333923	http://medialib.naturalis.nl/file/id/L .2333823/format/large
	Soft climber	Riverside vegetation in mixed lowland forest	Borneo, Brunei	M.J.E. Coode (6443)	$\text { L } 0672388 \text {) }$	L. 2333889	http://medialib.naturalis.nl/file/id/L .2333889/format/large
	Twining climber	Lowland dipterocarp primary rain forest	Negeri Sembilan, Malaysia	$\begin{aligned} & \text { Eric Gardette (E.G } \\ & \text { 1643) } \end{aligned}$	(L 0762757)	L. 4254436	http://medialib.naturalis.nl/file/id/L .4254436/format/large
	Climber	Secondary regrowth forest in disturbed lowland rainforest	Borneo, Malaysia	C.E. Ridsdale (2130)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672384) \end{aligned}$	L. 2333826	http://medialib.naturalis.nl/file/id/L .2333826/format/large
	$\begin{aligned} & \text { Climber (} 4 \mathrm{~m} \\ & \text { long) } \end{aligned}$	Riverside in forest	Borneo, Malaysia	Asik Mantor (118747)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672382) \end{aligned}$	L. 2333828	http://medialib.naturalis.nl/file/id/L .2333828/format/large
	Climber (20m above ground)	Lowland mixed forest	Palawan, Philippines	D.D. Soejarto, D.A. Madulid, F. Gaerlan, E. Sagcal, O. Fernando (8661)	(L 0761399)	L. 3298568	http://medialib.naturalis.nl/file/id/L .3928568/format/large
	Climber	Disturbed open area on evergreen forest margins	Singapore	J.F. Maxwell (83-9)	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~L} 0745318) \end{aligned}$	L. 2333866	http://medialib.naturalis.nl/file/id/L .2333866/format/large
	Climber	River side in secondary forest	Borneo, Malaysia	A.A. Nordin (86041)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672367) \end{aligned}$	L. 2333843	http://medialib.naturalis.nl/file/id/L .2333843/format/large
	Climber	Undergrowth on open bank of a stream in	New Guinea, Indonesia	L.J. Brass (12397)	$\text { L } 0745286 \text {) }$	L. 2333804	http://medialib.naturalis.nl/file/id/L .2333804/format/large

Adams et al.—American Journal of Botany 103(\#): \#\#\#-\#\#\#. 2016. - Data Supplement S5 - Page 7

		rainforest					
	Climber (to 60 feet)	Near a stream in primary forest	Borneo, Malaysia	J.A.R. Anderson and llias bin Paie (S.28316)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672373) \end{aligned}$	L. 2333836	http://medialib.naturalis.nl/file/id/L .2333836/format/large
	Climber (6 m)	Primary riverine forest	Borneo, Indonesia	J.P. Mogea and W.J.J.O. de Wilde (3766)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672370) \end{aligned}$	L. 2333840	http://medialib.naturalis.nl/file/id/L .2333840/format/large
	Climber	Undulating disturbed forest	Borneo, Malaysia	Maidil Amin \& Matin Amin (69988)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0672386) \end{aligned}$	L. 2333824	http://medialib.naturalis.nl/file/id/L .2333824/format/large
	Climber	Riverine forest	Moluccas, Indonesia	M.M.J. van Balgooy (4676)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0745289) \end{aligned}$	L. 2333800	http://medialib.naturalis.nl/file/id/L .2333800/format/large
	Climber (2m high)	Mixed dipterocarp forest	Borneo, Malaysia	H. Othman, Rantai \& Jugal (S.56497)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~L} 0761832) \end{aligned}$	L. 4254181	http://medialib.naturalis.nl/file/id/L .4254181/format/large
	Climber	Riverside of fast flowing river with steep banks, almost precipitous in places, in primary forest	Borneo, Malaysia	J.A.R. Anderson \& Ilias bin Paie (S.28876)	(L 0672374)	L. 2333835	http://medialib.naturalis.nl/file/id/L .2333835/format/large
	Climber (ca. 5m long)	Forest hillsides	Borneo, Malaysia	T. Sawan (125281)	$\begin{aligned} & \hline \mathrm{L} \\ & (\mathrm{~L} 0762871) \end{aligned}$	L. 4254355	http://medialib.naturalis.nl/file/id/L .4254355/format/large
	Climber	Lowland dipterocarp primary rain forest	Negeri Sembilan, Malaysia	$\begin{aligned} & \text { Eric Gardette (E.G } \\ & 2255 \text {) } \end{aligned}$	(L 0762759)	L. 4254438	http://medialib.naturalis.nl/file/id/L .4254438/format/large
Cissus sagittifera Desc.	(Unknown)	Cracks and fissures in quartzite	Fianarantsoa, Madagascar	H. Perrier de la Bâthie (12540)	P (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /177505
	Climbing liana	Woodland edge	Mahajanga, Madagascar	H. Perrier de la Bâthie (1371)	P (Unknown)	(Unknown)	http://www.tropicos.org/Specimen /177497
	(Unknown)	Limestone cliff	Madagascar	Bernard M. Descoings (2445)	$\begin{aligned} & \hline P \\ & \text { (P00061317) } \end{aligned}$	P00061317	http://plants.jstor.org/stable/10.55 55/al.ap.specimen.p00061317
	(Unknown)	Base of a limestone cliff	Toliara, Madagascar	Bernard M. Descoings (2443)	$\begin{aligned} & \text { MO } \\ & \text { (MO-163554) } \end{aligned}$	2211717	http://www.tropicos.org/Specimen /1354431

Appendix S6. Definitions of lateral, ventral, dorsal, basal, apical views and the dorsiventral dimension, height and width of the seeds used in the systematic descriptions of the fossils.

Adams et al.-American Joumal of Botany 103(\#): \#\#\#-\#\#\#\#. 2016. - Data Supplement S7 - Page 1
Appendix S7. Phylogenetic tree of the Vitaceae family obtained using the maximum likelihood criteria, as implemented in RAxML (Stamatakis, 2014), based on plastic DNA sequence data of Vifaceae. with a particular focus on genus Cissus, Bootstrap values and posterior probability values are indicated on the nodes. Positions of the core Cissus (see Fig. 5 in the main text) and Cissus striata clades are indicated, and the Cissus trianae clade of Rodrigues et al. (2014) is only weakly supported in this tree. Scale bar shows degree of genetic change (nucleotide substitutions per site) as distance on the phylogram.

Adams et al.-American Joumal of Botany 103(\#): :\#\#\#. 2016. - Data Supplement S8 - Page 1
Appendix S8. Chronogram of the Vitaceae family obtained using the Bayesian approach implemented in the software BEAST with two Vitaceae fossils as calibration points (indicated by asterisks; see text for details), with a particular focus on genus Cissus. Ages in millions of years (Ma) are indicated on the nodes. Scale is in millions of years.

Adams et al.—American Journal of Botany 103(\#): \#\#\#.\#\#. 2016. - Data Supplement S9 - Page 1
Appendix S9. Chronogram of the core Cissus clade obtained using the Bayesian approach implemented in the software BEAST with the fossil Cissus from the Oligocene Belen flora used as a calibration point (indicated by asterik: see text for details). Ages in millions of years (Ma) are indicated on the nodes. Scale is in millions of years.

Adams et al,-American Joumal of Botany 103(\#): \#\#\#-H\#\#. 2016. - Data Supplement S10-Page 1
Appendix S10. Maximum credibility tree obtained for the Vitaceae famity from the Bayesian analysis as implemented in the software BEAST. Posterior probability values are indicated at the nodes. Scale is in millions of years.

Adams et al.—American Joumat of Eotany 103(\#): \#\#\#- \#\#\#. 2016. - Data Supplement S11 - Page 1
Appendix S11. Chronogram obtained using the Bayesian approach implemented in the software BEAST and three Vitaceae fossils as calibration points, Bars on nodes are the 95% highest posterior probability intervals on the age estimates. Scale is in milions of years.

