1,027 research outputs found

    The Phanerozoic: reconciling modern plate tectonics with ancient orogenic systems and crustal growth

    Get PDF
    [Extract] Phanerozoic Earth history affords us the previous opportunity of understanding the links between active tectonic processes and crustal growth, because we have the oceanic and continental record to combine into a coherent, whole-Earth geodynamic model

    Production of Jet Pairs at Large Relative Rapidity in Hadron-Hadron Collisions as a Probe of the Perturbative Pomeron

    Full text link
    The production of jet pairs with small transverse momentum and large relative rapidity in high energy hadron-hadron collisions is studied. The rise of the parton-level cross section with increasing rapidity gap is a fundamental prediction of the BFKL `perturbative pomeron' equation of Quantum Chromodynamics. However, at fixed collider energy it is difficult to disentangle this effect from variations in the cross section due to the parton distributions. It is proposed to study instead the distribution in the azimuthal angle difference of the jets as a function of the rapidity gap. The flattening of this distribution with increasing dijet rapidity gap is shown to be a characteristic feature of the BFKL behaviour. Predictions for the Fermilab proton-antiproton collider are presented.Comment: 17 pages, 11 figures, preprint DTP/94/0

    Post-Archean granitic rocks: contrasting petrogenetic processes and tectonic environments

    Get PDF
    Granitic rocks represent a ubiquitous component of upper continental crust but their origin remains highly controversial. This controversy stems from the fact that the granites may result from fractionation of mantle-derived basaltic magmas or partial melting of different crustal protoliths at contrasting pressure\u2013temperature conditions, either water-fluxed or fluid-absent. Consequently, many different mechanisms have been proposed to explain the compositional variability of granites ranging from whole igneous suites down to mineral scale. This Special Publication presents an overview of the state of the art and envisages future avenues towards a better understanding of granite petrogenesis

    Towards a quantitative phase-field model of two-phase solidification

    Full text link
    We construct a diffuse-interface model of two-phase solidification that quantitatively reproduces the classic free boundary problem on solid-liquid interfaces in the thin-interface limit. Convergence tests and comparisons with boundary integral simulations of eutectic growth show good accuracy for steady-state lamellae, but the results for limit cycles depend on the interface thickness through the trijunction behavior. This raises the fundamental issue of diffuse multiple-junction dynamics.Comment: 4 pages, 2 figures. Better final discussion. 1 reference adde

    kt Effects in Direct-Photon Production

    Full text link
    We discuss the phenomenology of initial-state parton-kt broadening in direct-photon production and related processes in hadron collisions. After a brief summary of the theoretical basis for a Gaussian-smearing approach, we present a systematic study of recent results on fixed-target and collider direct-photon production, using complementary data on diphoton and pion production to provide empirical guidance on the required amount of kt broadening. This approach provides a consistent description of the observed pattern of deviation of next-to-leading order QCD calculations relative to the direct-photon data, and accounts for the shape and normalization difference between fixed-order perturbative calculations and the data. We also discuss the uncertainties in this phenomenological approach, the implications of these results on the extraction of the gluon distribution of the nucleon, and the comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure

    Qubits from Number States and Bell Inequalities for Number Measurements

    Full text link
    Bell inequalities for number measurements are derived via the observation that the bits of the number indexing a number state are proper qubits. Violations of these inequalities are obtained from the output state of the nondegenerate optical parametric amplifier.Comment: revtex4, 7 pages, v2: results identical but extended presentation, v3: published versio

    Diffractive Higgs Production at the LHC

    Full text link
    We use diffractive parton distributions obtained from fits to the diffractive structure function measured at HERA to predict cross sections for single diffractive Higgs production at the LHC. The dominant background processes are also considered. Although some 5% - 15% of Higgs events are predicted to be diffractive in this model, the ratio of signal to background is not significantly improved.Comment: 14 pages, LaTeX, incl. 6 postscript figures, uses epsf.st

    A critical assessment of UH-60 main rotor blade airfoil data

    Get PDF
    Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch by 22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables

    The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens

    Get PDF
    Long-lived (800 Ma) Paleo– to Mesoproterozoic accretionary orogens on the margins of Laurentia, Baltica, Amazonia, and Kalahari collided to form the core of the supercontinent, Rodinia. Accretionary orogens in Laurentia and Baltica record predominately radiogenic zircon εHf(t) and whole-rock Pb isotopic compositions, short crustal residence times (ca. 0.5 Ga), and the development of arc-backarc complexes. The accretionary orogenic record of Laurentia and Baltica is consistent with a retreating accretionary orogen and analogous to the Phanerozoic western Pacific orogenic system. In contrast, the Mesoproterozoic orogens of Amazon and Kalahari cratons record unradiogenic zircon εHf(t) values, ca. 0.8 Ga crustal residence times, and more ancient whole-rock Pb isotopic signatures. The accretionary orogenic record of Amazonia and Kalahari indicates the preferential incorporation of cratonic material in continental arcs of advancing accretionary orogens comparable to the Phanerozoic eastern Pacific orogenic system. Based on similarities in the geodynamic evolution of the Phanerozoic circum-Pacific orogens peripheral to Gondwana/Pangea, we suggest that the Mesoproterozoic accretionary orogens formed as peripheral subduction zones along the margin of the supercontinent Nuna (ca. 1.8–1.6 Ga). The eventual collapse of this peripheral subduction zone onto itself and closure of the external ocean around Nuna to form Rodinia is equivalent to the projected future collapse of the circum-Pacific subduction system and juxtaposition of Australia-Asia with South America. The juxtaposition of advancing and retreating accretionary orogens at the core of the supercontinent Rodinia demonstrates that supercontinent assembly can occur by the closure of external oceans and indicates that future closure of the Pacific Ocean is plausible

    The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments

    Full text link
    We give an overview of our current understanding of the structure of gas giant planets, from Jupiter and Saturn to extrasolar giant planets. We focus on addressing what high-pressure laboratory experiments on hydrogen and helium can help to elucidate about the structure of these planets.Comment: Invited contribution to proceedings of High Energy Density Laboratory Astrophysics, 6. Accepted to Astrophysics & Space Science. 12 page
    • …
    corecore