2,125 research outputs found

    Religious Identity, Religious Attendance, and Parental Control

    Full text link
    Using a national sample of adolescents aged 10–18 years and their parents (N = 5,117), this article examines whether parental religious identity and religious participation are associated with the ways in which parents control their children. We hypothesize that both religious orthodoxy and weekly religious attendance are related to heightened levels of three elements of parental control: monitoring activities, normative regulations, and network closure. Results indicate that an orthodox religious identity for Catholic and Protestant parents and higher levels of religious attendance for parents as a whole are associated with increases in monitoring activities and normative regulations of American adolescents

    Recurrent rare copy number variants increase risk for esotropia

    Get PDF
    Purpose: To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia. Methods: CNVs were identified in 1614 Caucasian individuals with comitant esotropia and 3922 Caucasian controls from Illumina SNP genotyping using two Hidden Markov model (HMM) algorithms, PennCNV and QuantiSNP, which call CNVs based on logR ratio and B allele frequency. Deletions and duplications greater than 10 kb were included. Common CNVs were excluded. Association testing was performed with 1 million permutations in PLINK. Significant CNVs were confirmed with digital droplet polymerase chain reaction (ddPCR). Whole genome sequencing was performed to determine insertion location and breakpoints. Results: Esotropia patients have similar rates and proportions of CNVs compared with controls but greater total length and average size of both deletions and duplications. Three recurrent rare duplications significantly (P = 1 × 10-6) increase the risk of esotropia: chromosome 2p11.2 (hg19, 2:87428677-87965359), spanning one long noncoding RNA (lncRNA) and two microRNAs (OR 14.16; 95% confidence interval [CI] 5.4-38.1); chromosome 4p15.2 (hg19, 4:25554332-25577184), spanning one lncRNA (OR 11.1; 95% CI 4.6-25.2); chromosome 10q11.22 (hg19, 10:47049547-47703870) spanning seven protein-coding genes, one lncRNA, and four pseudogenes (OR 8.96; 95% CI 5.4-14.9). Overall, 114 cases (7%) and only 28 controls (0.7%) had one of the three rare duplications. No case nor control had more than one of these three duplications. Conclusions: Rare CNVs are a source of genetic variation that contribute to the genetic risk for comitant esotropia, which is likely polygenic. Future research into the functional consequences of these recurrent duplications may shed light on the pathophysiology of esotropia

    Clin Infect Dis

    Get PDF
    BackgroundGonorrhea (GC) and chlamydia (CT) are the most commonly reported notifiable diseases in the United States. The Centers for Disease Control and Prevention recommends that men who have sex with men (MSM) be screened for urogenital GC/CT, rectal GC/CT, and pharyngeal GC. We describe extragenital GC/CT testing and infections among MSM attending sexually transmitted disease (STD) clinics.MethodsThe STD Surveillance Network collects patient data from 42 STD clinics. We assessed the proportion of MSM attending these clinics during July 2011\u2013June 2012 who were tested and positive for extragenital GC/CT at their most recent visit or in the preceding 12 months and the number of extragenital infections that would have remained undetected with urethral screening alone.ResultsOf 21 994 MSM, 83.9% were tested for urogenital GC, 65.9% for pharyngeal GC, 50.4% for rectal GC, 81.4% for urogenital CT, 31.7% for pharyngeal CT, and 45.9% for rectal CT. Of MSM tested, 11.1% tested positive for urogenital GC, 7.9% for pharyngeal GC, 10.2% for rectal GC, 8.4% for urogenital CT, 2.9% for pharyngeal CT, and 14.1% for rectal CT. More than 70% of extragenital GC infections and 85% of extragenital CT infections were associated with negative urethral tests at the same visit and would not have been detected with urethral screening alone.ConclusionsExtragenital GC/CT was common among MSM attending STD clinics, but many MSM were not tested. Most extragenital infections would not have been identified, and likely would have remained untreated, with urethral screening alone. Efforts are needed to facilitate implementation of extragenital GC/CT screening recommendations for MSM.20142015-12-01T00:00:00ZCC999999/Intramural CDC HHS/United StatesRFA PS08-865/PS/NCHHSTP CDC HHS/United States24647015PMC466652

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Possible mineral contributions to the diet and health of wild chimpanzees in three East African forests

    Get PDF
    For financial support, the authors acknowledge the Mohamed bin Zayed Species Conservation Fund grant numbers 0925272, 10251055, 11252562, 12254904, the Royal Zoological Society of Scotland, the Leverhulme Trust grant number ECF‐2013‐507, and the Boise Fund.We present new data on the ingestion of minerals from termite mound soil by East African chimpanzees (Pan troglodytes schweinfurthii) living in the Budongo Forest Reserve, Uganda, the Gombe National Park and the Mahale Mountains National Park, Tanzania. Termite mound soil is here shown to be a rich source of minerals, containing high concentrations of iron and aluminum. Termite mound soil is not, however, a source of sodium. The concentrations of iron and aluminum are the highest yet found in any of the mineral sources consumed. Levels of manganese and copper, though not so high as for iron and aluminum, are also higher than in other dietary sources. We focus on the contribution of termite mound soil to other known sources of mineral elements consumed by these apes, and compare the mineral content of termite soil with that of control forest soil, decaying wood, clay, and the normal plant‐based chimpanzee diet at Budongo. Samples obtained from Mahale Mountains National Park and Gombe National Park, both in Tanzania, show similar mineral distribution across sources. We suggest three distinct but related mechanisms by which minerals may come to be concentrated in the above‐mentioned sources, serving as potentially important sources of essential minerals in the chimpanzee diet.PostprintPeer reviewe

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore