9,665 research outputs found
Comment: Plio‐Pleistocene Hominid limb proportions: evolutionary reversals or estimation errors?
Arresting woodland bird decline in Australian agricultural landscapes: potential application of the European agri-environment model
This paper considered the applicability of the European model of land stewardship payments, in particular its support for biodiversity conservation in agricultural landscapes, to an Australian context. More broadly, the research approach described in the paper may also be applied to assessing the suitability of overseas stewardship schemes to the provision of any ecoservice in
Australia, such as carbon sequestration and floodwater regulation
Ocean acidification impacts on the physiology and adhesive properties of the starfish <i>Asterias rubens</i>
A silicone nanocrystal tunnel field effect transistor
Abstract : In this work, we demonstrate a silicon nanocrystal Field Effect Transistor (ncFET). Its operation is similar to that of a Tunnelling Field Effect Transistor (TFET) with two barriers in series. The tunnelling barriers are fabricated in very thin silicon dioxide and the channel in intrinsic polycrystalline silicon. The absence of doping eliminates the problem of achieving sharp doping profiles at the junctions, which has proven a challenge for large-scale integration and, in principle, allows scaling down the atomic level. The demonstrated ncFET features a 104 on/off current ratio at room temperature, a low 30pA/lm leakage current at a 0.5V bias, an on-state current on a par with typical all-Si TFETs and bipolar operation with high symmetry. Quantum dot transport spectroscopy is used to assess the band structure and energy levels of the silicon island
Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces
Frost and ice formation can have severe negative consequences, such as aircraft safety and reliability. At atmospheric pressure, water heterogeneously condenses and then freezes at low temperatures. To alter this freezing process, this research examines the effects of biphilic surfaces (surfaces which combine hydrophilic and hydrophobic regions) on heterogeneous water nucleation, growth, and freezing. Silicon wafers were coated with a self-assembled monolayer and patterned to create biphilic surfaces. Samples were placed on a freezing stage in an environmental chamber at atmospheric pressure, at a temperature of 295 K, and relative humidities of 30%, 60%, and 75%. Biphilic surfaces had a significant effect on droplet dynamics and freezing behavior. The addition of biphilic patterns decreased the temperature required for freezing by 6 K. Biphilic surfaces also changed the size and number of droplets on a surface at freezing and delayed the time required for a surface to freeze. The main mechanism affecting freezing characteristics was the coalescence behavior.Citation: A. Van Dyke, D. Collard, M. M. Derby and A. R. Betz, "Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces," Applied Physics Letters, 107, Issue 14, 201
The domestic and gendered context for retirement
Against a global backdrop of population and workforce ageing, successive UK governments have encouraged people to work longer and delay retirement. Debates focus mainly on factors affecting individuals’ decisions on when and how to retire. We argue that a fuller understanding of retirement can be achieved by recognizing the ways in which individuals’ expectations and behaviours reflect a complicated, dynamic set of interactions between domestic environments and gender roles, often established over a long time period, and more temporally proximate factors. Using a qualitative data set, we explore how the timing, nature and meaning of retirement and retirement planning are played out in specific domestic contexts. We conclude that future research and policies surrounding retirement need to: focus on the household, not the individual; consider retirement as an often messy and disrupted process and not a discrete event; and understand that retirement may mean very different things for women and for men
Behavioral Modernity and the Cultural Transmission of Structured Information: The Semantic Axelrod Model
Cultural transmission models are coming to the fore in explaining increases
in the Paleolithic toolkit richness and diversity. During the later
Paleolithic, technologies increase not only in terms of diversity but also in
their complexity and interdependence. As Mesoudi and O'Brien (2008) have shown,
selection broadly favors social learning of information that is hierarchical
and structured, and multiple studies have demonstrated that teaching within a
social learning environment can increase fitness. We believe that teaching also
provides the scaffolding for transmission of more complex cultural traits.
Here, we introduce an extension of the Axelrod (1997} model of cultural
differentiation in which traits have prerequisite relationships, and where
social learning is dependent upon the ordering of those prerequisites. We
examine the resulting structure of cultural repertoires as learning
environments range from largely unstructured imitation, to structured teaching
of necessary prerequisites, and we find that in combination with individual
learning and innovation, high probabilities of teaching prerequisites leads to
richer cultural repertoires. Our results point to ways in which we can build
more comprehensive explanations of the archaeological record of the Paleolithic
as well as other cases of technological change.Comment: 24 pages, 7 figures. Submitted to "Learning Strategies and Cultural
Evolution during the Paleolithic", edited by Kenichi Aoki and Alex Mesoudi,
and presented at the 79th Annual Meeting of the Society for American
Archaeology, Austin TX. Revised 5/14/1
The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability
- …
